Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade Adopted April 2014 - Standards Resource Guide Document
This Teacher Resource Guide has been developed to provide supporting materials to help educators successfully implement the Indiana Academic Standards for Third Grade Mathematics - Adopted April 2014. These resources are provided to help you in your work to ensure all students meet the rigorous learning expectations set by the Academic Standards. Use of these resources is optional - teachers should decide which resource will work best in their school for their students.

This resource document is a living document and will be frequently updated. Please send any suggested links and report broken links to: Bill Reed
Secondary Math Specialist
Indiana Department of Education
wreed@doe.in.gov
317-232-9114

The Indiana Department of Education would like to thank Lisa Ader, Pamela Cintas, Johanna Huls, Ben Kemp, Jamee McMurray, Jim Mirabelli, Kathy Spivey, and Rhonda Van Winkle for their contributions to this document.

The examples in this document are for illustrative purposes only, to promote a base of clarity and common understanding. Each example illustrates a standard but please note that examples are not intended to limit interpretation or classroom applications of the standards.

The links compiled and posted in this Resource Guide have been provided by the Department of Education and other sources. The DOE has not attempted to evaluate any posted materials. They are offered as samples for your reference only and are not intended to represent the best or only approach to any particular issue. The DOE does not control or guarantee the accuracy, relevance, timeliness, or completeness of information contained on a linked website; does not endorse the views expressed or services offered by the sponsor of a linked website; and cannot authorize the use of copyrighted materials contained in linked websites. Users must request such authorization from the sponsor of the linked website.

GOOD WEBSITES FOR MATHEMATICS:

```
http://nlvm.usu.edu/en/nav/vlibrary.html
http://www.math.hope.edu/swanson/methods/applets.html
http://learnzillion.com
http://illuminations.nctm.org
https://teacher.desmos.com
http://illustrativemathematics.org
```

```
http://www.insidemathematics.org
https://www.khanacademy.org/
https://www.teachingchannel.org/
http://map.mathshell.org/materials/index.php
https://www.istemnetwork.org/index.cfm
http://www.azed.gov/azccrs/mathstandards/
```


Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

	Indiana Academic Standard for MathematicsThird Grade Adopted April 2014	Highlighted Vocabulary Words from the Standard Defined	Specific Third Grade Example for the Standard	Specific Third Grade Electronic Resource for the Standard
Number Sense				
MA.3.NS. 1	Read and write whole numbers up to 10,000 . Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000.	Whole numbers - the set of numbers $0,1,2,3,4,5$, etc. Word form - a number written in words Models - a picture representation of the number Standard form - a number written in a way that shows only its digits Expanded form - a number written as the sum of the values of its digits	a) Write the numeral below in standard form and expanded form. five thousand, seven hundred two b) Activity: create riddles such as, "I have 5 tens, 12 ones and 3 hundreds. What number am I?" c) Activity: create "I Have - Who Has" cards. For example, one card might have " 6,485 " on it, another card could have " $6000+400+80+5$ ", and another card "six thousand, four hundred eightyfive". Each student would have one card and need to find classmates who have cards with an equivalent value in a different representation.	http://www.ixl.com/ math/grade-3/write-numbers-in-words
MA.3.NS. 2	Compare two whole numbers up to 10,000 using $>$, $=$, and < symbols.		a) Use >, =, or < to compare the numbers. $4,625$ \qquad 4,652 b) Activity: students play a variation on the card game "War" making the largest possible number from four dealt cards and then comparing their numbers using the signs <, >, and = printed on index cards.	http://www.ixl.com/ math/grade-3/comparingnumbers

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

MA.3.NS. 3	Understand a fraction, $1 / b$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / b$. [In grade 3, limit denominators of fractions to 2, 3, 4, 6, 8.]	Quantity - amount of something Partitioned - divided	Students initial understandings of fraction should include being composed of many equal pieces called unit fractions (i.e. fractions with numerator 1). For example, the fraction $5 / 6$ is composed of five $1 / 6$ pieces. Students should also recognize figures that have been divided into fractional parts and those which have not. The figure below on the left is an example of thirds but the one on the right does not show thirds. However, students might indicate that the figure on the right has one part which is $1 / 2$ and two parts showing $1 / 4$ and conclude that the two sides are equivalent.	https://www.illustrati vemathematics.org/ill ustrations/833
MA.3.NS. 4	Represent a fraction, $1 / \mathrm{b}$, on a number line by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.	Number line- a straight line on which there is indicated a one-toone correspondence between points on the line and the set of real numbers. Interval- space between two points, in this case the space between 0 and 1 Endpoint-the last point on a segment or ray	a) Represent $\frac{1}{6}$ on a number line. Note: In the picture below, the whole is defined from 0 to 1 . It has been divided into 3 equal parts or thirds. The fraction $1 / 3$ is the space between 0 and $1 / 3$. Students will often count the tic marks and think that it shows fourths rather than thirds. One way to introduce fractions is through measurement activities using a ruler and relating it to a number line. It may also help to start by having students use number lines to create the benchmarks for a half, a quarter, three quarters, etc.	https://www.illustrati vemathematics.org/ill ustrations/168

Page 3 of 17 - updated 7-25-14

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

MA.3.NS. 5	Represent a fraction, a / b, on a number line by marking off lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b, and that its endpoint locates the number a / b on the number line.		a) Represent $\frac{3}{8}$ on a number line. b) Represent $\frac{5}{4}$ on a number line.	
MA.3.NS. 6	Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.	Equivalent- having the same or equal value	Note: Fraction models can be used to help students understand fraction equivalence. The models below show that $\frac{1}{2}, \frac{2}{4}, \frac{3}{6}$, and $\frac{4}{8}$ are equivalent.	https://www.illustrati vemathematics.org/ill ustrations/871
MA.3.NS. 7	Recognize and generate simple equivalent fractions (e.g., 1/2 = $2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).	Equivalent fractions-fractions that name the same part of a whole, same part of a set, or same location on a number line	Name two fractions that are equivalent to $\frac{2}{3}$. Explain how you know they are equivalent.	http://www.ixl.com/ math/grade- 3/equivalent- fractions-choose-the-equivalent-fraction

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

| MA.3.NS.8 | Compare two fractions with the
 same numerator or the same
 denominator by reasoning about
 their size based on the same
 whole. Record the results of
 comparisons with the symbols $>$,
 $=$, or <, and justify the
 conclusions (e.g. , by using a
 visual fraction model). | | Use $>,=$, or $<$ to compare the fractions. Explain how
 you know your answer is correct. |
| :--- | :--- | :--- | :--- | :--- |
| MA.3.NS.9 | Use place value understanding
 to round 2- and 3-digit whole
 numbers to the nearest 10 or
 100. | Place value- the value of the
 place, or position, of a digit in a
 number | $\frac{2}{8}-\frac{3}{8}$ |

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade Adopted April 2014 - Standards Resource Guide Document

Computation

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

MA.3.C. 3	Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.	Property of 1 in division - any number (except 0) divided by itself is equal to 1 . Any number divided by 1 is equal to that number. Property of $\mathbf{0}$ in division - zero divided by any number (except 0) is zero. A number cannot be divided by zero. Inverse- the inverse of multiplication is division.	For the 3 models below, explain why each shows or does not show $15 \div 3$. $5 \times 3=15, \text { so } 15 \div 3=5$ $\bullet \bullet \bullet\|\bullet \bullet \bullet\| \bullet \bullet \bullet\|\bullet \bullet \bullet\| \bullet \bullet \bullet$	$\frac{\text { http://www.ixl.com/ }}{\text { math/grade- }}$ 3/division-word- problems-facts-to-10
MA.3.C. 4	Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each).	Quotient- when one number (dividend) is divided by another number (divisor), the result obtained is known as quotient	Zack has 72 pencils. He will divide them equally into 9 groups. Which expression represents this situation? - $72+9$ - $72-9$ - $72 x 9$ - $72 \div 9$	https://www.illustrati vemathematics.org/ill ustrations/1531 https://www.illustrati vemathematics.org/ill ustrations/1540
MA.3.C. 5	Multiply and divide within 100 using strategies, such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$), or properties of operations.		Evaluate each expression.	http://www.ixl.com/ math/grade-3/relate-multiplication-anddivision

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade Adopted April 2014 - Standards Resource Guide Document

MA.3.C. 6	Demonstrate fluency with multiplication facts and corresponding division facts of 0 to 10.	Fluently - efficient and accurate	$\begin{aligned} & \text { Evaluate } \\ & 5 \times 7 \\ & 7 \times 1 \\ & 64 \div 8 \\ & 9 \div 1 \end{aligned}$	ch expres 3×9 1×4 $63 \div 9$ $81 \div 9$	0×2 6×9 $35 \div 5$	$\begin{aligned} & 6 \times 8 \\ & 24 \div 6 \\ & 20 \div 4 \end{aligned}$	http://www.ixl.com/ math/grade-2/multiplication-tables-up-to-10 http://www.multiplic ation.com/games/pla $\mathrm{y} /$ math-models

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

Algebraic Thinking

MA.3.AT. 1	Solve real-world problems involving addition and subtraction of whole numbers within 1000 (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).			The 3rd and 4th grade students are going on a field trip. There are 423 students going altogether and 157 of them are 3 rd grade students. How many 4th grade students are going on the field trip? A third grade class collected 235 cans for their food drive. The fourth grade class collected 137 cans. - How many cans did they collect altogether? - How many more cans did the third grade class collect than the fourth grade class? - How many more cans are needed to have a total of 700 cans?	https://www.illustrative mathematics.org/illustrat ions/1315
MA.3.AT. 2	Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).			Jill bought 48 flowers. She will divide these equally into 6 vases. How many flowers will she put in each vase? Jerry bought 9 packages of cookies. Each package contains 10 cookies. How many cookies did he buy in all?	https://www.illustrative mathematics.org/illustrat ions/262
MA.3.AT.3	Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).			Sydney collected 231 rocks last week and 137 rocks this week. She gave 53 of the rocks to her friends. How many rocks does she have now? Eric's goal is to practice his math facts for a total of 75 minutes this week. He practiced yesterday for 15 minutes. For the next 6 days, he will practice the same amount of time each day. How many minutes will Eric need to practice each day to reach his goal?	https://www.illustrative mathematics.org/illustrat ions/1301

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

Geometry				
MA.3.G. 1	Identify and describe the following: cube, sphere, prism, pyramid, cone, and cylinder.		Describe similarities and differences between a pyramid and cone.	http://www.ixl.com/ math/grade- 3/identify-planar- and-solid-shapes
MA.3.G.2	Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories.	Attributes - characteristics or features	Which two shapes do not belong in this group? Describe how they are different from the other 5 shapes.	http://www.ixl.com/ math/grade-3/which-2-dimensional-shape-is-being-described
MA.3.G.3	Identify, describe and draw points, lines and line segments using appropriate tools (e.g., ruler, straightedge, and technology), and use these terms when describing twodimensional shapes.		a) Draw a point, line segment, and line. b) Describe how a line segment is different than a line. Activity: Have students identify objects inside and outside the classroom and describe where they see points and lines represented.	https://www.illustrati vemathematics.org/ill ustrations/1263

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

MA.3.G.4	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole (1/2, $1 / 3,1 / 4,1 / 6,1 / 8)$.	Unit fraction - a fraction with a numerator of 1.		Divide the rectangle on the left so that it is split into 3 parts with equal areas. Then, divide the other rectangle in a different way but still into 3 parts with equal areas. Divide the circle so that it is split into 4 parts with equal areas. Then, determine how much each area represents in terms of the whole circle.	https://www.illustrati vemathematics.org/ill ustrations/1502

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

Measurement

MA.3.M. 1	Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve onestep real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	Mass- the amount of matter an object contains Volume - the amount of 3dimensional space an object occupies; capacity		Mr. Ruiz wants to bring lemonade for his 24 students on Friday. Which amount of lemonade would be reasonable for Mr. Ruiz to bring for his students? - About 4-5 quarts - About 2-3 gallons - About 1 liter Activity: Have students identify five things that have a mass of about 1 gram, 5 grams, 10 grams, and 1 kilogram. This may help students develop gram benchmarks.	https://learnzillion.co m/lessons?utf8=\%E2 \%9C\%93\&filters\%5Bs ubject\%5D=math\&qu ery=3.MD.2\&commit =Search+lessons https://www.illustrati vemathematics.org/ill ustrations/1929
MA.3.M. 2	Choose and use appropriate units and tools to estimate and measure length, weight, and temperature. Estimate and measure length to a quarter-inch, weight in pounds, and temperature in degrees Celsius and Fahrenheit.	Tools - may include rulers, balance or scales, beakers, graduated cylinders, and thermometers		What is the length of the line segment to the nearest quarter-inch? Based on the thermometer below (given in degrees Fahrenheit), what is the temperature?	http://www.ixl.com/ math/grade-3/which-metric-unit-isappropriate

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

MA.3.M. 3	Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve realworld problems involving addition and subtraction of time intervals in minutes.	Analog clock - includes an hour hand (short) and a minute hand (long) to represent the time	Noah starting reading his book at 7:15 p.m. He stopped reading at 8:05 p.m. How many minutes did Noah read?	http://www.ixl.com/ math/grade-3/read-clocks-and-writetimes
MA.3.M. 4	Find the value of any collection of coins and bills. Write amounts less than a dollar using the $¢$ symbol and write larger amounts using the \$ symbol in the form of dollars and cents (e.g., \$4.59). Solve real-world problems to determine whether there is enough money to make a purchase.		Derek has $\$ 5.00$. He wants to buy a sandwich for $\$ 2.25$, chips for $\$ 0.75$, a drink for $\$ 1.25$, and a cookie for $\$ 1.25$. Does Derek have enough money to buy all of this? Support your answer using words, numbers, and/or symbols.	http://www.ixl.com/ math/grade- 3/purchases-do-you-have-enough-money-up-to-10-dollars

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

| MA.3.M. 7 | Find perimeters of polygons
 given the side lengths or by
 finding an unknown side length. | Polygon - a closed shape
 (two-dimensional) bounded
 by three or more line
 segments | What is the perimeter, in units, of the pentagon? |
| :--- | :--- | :--- | :--- | :--- | :--- |

Indiana Department of Education

Indiana Academic Standards for Mathematics - Third Grade
Adopted April 2014 - Standards Resource Guide Document

Data Analysis

MA.3.DA. 1	Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve oneand two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	Scaled Picture Graph- a graph that uses symbols to represent data Scaled Bar Graph- a graph that uses rectangular bars to represent data Frequency Table- a way of organizing data in columns and rows		Based on the graph below, how many more books did Nick read than William? Activity: Students can conduct an observation, survey, or experiment. They can collect, organize, and display their data, and make observations based on their data display. (Examples: conduct a survey about favorite food, color, etc.; observe and tally the different colors of shirts classmates wear to school on a given day.)	http://www.ixl.com/ math/grade-3/createpictographs http://www.ixl.com/ math/grade-3/create-bar-graphs
MA.3.DA. 2	Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.	Line Plot - data represented with check marks, X's, or other symbols above a number line to show the frequency of each value		n students in Darrel's class measured the length of their umb to the nearest quarter-inch. The data is shown low. Create a line plot to display the data. $1 \frac{1}{4}, 1 \frac{1}{2}, 2 \frac{1}{2}, 2 \frac{1}{4}, 2,1 \frac{3}{4}, 2,1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{1}{4}$	https://learnzillion.co m/lessons?utf8=\%E2 \%9C\%93\&filters\%5Bs ubject\%5D=math\&qu ery=4.MD.4\&commit =Search+lessons

