BIG (Idea

Motion occurs when an object changes its position.

2.1 Describing Motion

MAIN <Idea An object's speed depends on how far an object travels in a unit of time.

2.2 Acceleration

 MAIN Idea Acceleration describes how the speed of an object is changing.
2.3 Motion and Forces

 MAIN IIdea An object's motion changes only if the forces acting on the object are unbalanced.
Taking the Plunge

How would you describe a ride on a roller coaster? You might talk about the thrills you experienced on the high-speed turns or on the breath-taking downhill plunges. The high speeds and sudden changes in speed and direction can all help make the ride a memorable experience.

Science Journal

Write a paragraph describing how three different rides in an amusement park cause you to move.

36

Motion

Start-Up Activities

Compare Speeds

A cheetah can run at a speed of almost $120 \mathrm{~km} / \mathrm{h}$ and is the fastest runner in the world. A horse can reach a speed of $64 \mathrm{~km} / \mathrm{h}$; an elephant's top speed is about $40 \mathrm{~km} / \mathrm{h}$; and the fastest snake slithers at a speed of about $3 \mathrm{~km} / \mathrm{h}$. The speed of an object is calculated by dividing the distance the object travels by the time it takes it to move that distance. How does your speed compare to the speeds of these animals?

1. Use a meterstick to mark off 10 m .
2. Have your partner use a stopwatch to determine how fast you run 10 m .
3. Divide 10 m by your time in seconds to calculate your speed in m / s.
4. Multiply your answer by 3.6 to determine your speed in km/h.
5. Think Critically Write a paragraph in your Science Journal comparing your speed with the maximum speed of a cheetah, horse, elephant, and snake. Could you win a race with any of them?

Preview this chapter's content and activities at gpscience.com

Motion Many things are in motion in your everyday life. Make the following Foldable to help you better understand motion as you read the chapter.

STEP 1 Fold a sheet of paper in half lengthwise. Make the back edge about 1.25 cm longer than the front edge.

STEP 2 Fold in half, then fold in half again to make three folds.

STEP 3 Unfold and cut only the top layer along the three folds to make four tabs.

STEP 4 Label the tabs.

Identify Questions Before you read the chapter, select a motion you can observe and write it under the left tab. As you read the chapter, write answers to the other questions under the appropriate tabs.

Describing Motion

Reading Guide

What You'll Learn
 - Distinguish between distance and displacement.
 - Explain the difference between speed and velocity.
 - Interpret motion graphs.

Figure 1 This mail truck is in motion. Infer How do you know the mail truck has moved?

Why It's Important
Understanding the nature of motion and how to describe it helps you understand why motion occurs.
(2) Review Vocabulary instantaneous: occurring at a particular instant of time

New Vocabulary

- distance
- displacement
- speed
- average speed
- instantaneous speed
- velocity

Motion

Are distance and time important in describing running events at the track-and-field meets in the Olympics? Would the winners of the $5-\mathrm{km}$ race and the $10-\mathrm{km}$ race complete the run in the same length of time?

Distance and time are important. In order to win a race, you must cover the distance in the shortest amount of time. The time required to run the $10-\mathrm{km}$ race should be longer than the time needed to complete the $5-\mathrm{km}$ race because the first distance is longer. How would you describe the motion of the runners in the two races?

Motion and Position You don't always need to see something move to know that motion has taken place. For example, suppose you look out a window and see a mail truck stopped next to a mailbox. One minute later, you look out again and see the same truck stopped farther down the street. Although you didn't see the truck move, you know it moved because its position relative to the mailbox changed.

A reference point is needed to determine the position of an object. In Figure 1, the reference point might be a tree or a mailbox. Motion occurs when an object changes its position relative to a reference point. The motion of an object depends on the reference point that is chosen. For example, the motion of the mail truck in Figure 1 would be different if the reference point were a car moving along the street, instead of a mailbox.

Frame of Reference After a reference point is chosen, a frame of reference can be created. A frame of reference is a coordinate system in which the position of the objects is measured. The x-axis and y-axis of the reference frame are drawn so that they intersect the reference point.

Distance In track-and-field events, have you ever run a $50-\mathrm{m}$ dash? A distance of 50 m was marked on the track or athletic field to show you how far to run. An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit of length or distance is the meter (m). Longer distances are measured in kilometers (km). One kilometer is equal to $1,000 \mathrm{~m}$. Shorter distances are measured in centimeters (cm). One meter is equal to 100 centimeters.

Displacement Suppose a runner jogs to the $50-\mathrm{m}$ mark and then turns around and runs back to the $20-\mathrm{m}$ mark, as shown in Figure 2. The runner travels 50 m in the original direction (north) plus 30 m in the opposite direction (south), so the total distance she ran is 80 m . How far is she from the starting line? The answer is 20 m . Sometimes you may want to know not only your distance but also your direction from a reference point, such as from the starting point. Displacement is the distance and direction of an object's change in position from the starting point. The runner's displacement in Figure $\mathbf{2}$ is 20 m north.

Moving Through Space
Using the Sun as your reference point, you are moving about 30 km through space every second. What is this speed in meters per second?

Figure 2 Distance and displacement are not the same. The runner's displacement is 20 m north of the starting line. However, the total distance traveled is 80 m . the distance traveled would be the same if the runner's motion was in a single direction. If the runner ran from the starting point to the finish line in a straight line, then the distance traveled would be 50 m and the displacement would be 50 m north.

Reading Check

How do distance and
displacement differ?

Speed

Think back to the example of the mail truck's motion in Figure 1. You could describe the movement by the distance traveled and by the displacement from the starting point. You also might want to describe how fast it is moving. To do this, you need to know how far it travels in a given amount of time. Speed is the distance an object travels per unit of time.

Displacement $=20 \mathrm{~m}$ north of starting line Distance traveled $=50 \mathrm{~m}+30 \mathrm{~m}=80 \mathrm{~m}$

Calculating Speed Any change over time is called a rate. If you think of distance as the change in position, then speed is the rate at which distance is traveled or the rate of change in position. Speed can be calculated from this equation:

Speed Fquation

$$
\begin{aligned}
\text { speed (in meters/second) } & =\frac{\text { distance (in meters) }}{\text { time (in seconds) }} \\
s & =\frac{d}{t}
\end{aligned}
$$

In SI units, distance is measured in meters and time is measured in seconds, so the SI unit for speed is meters per second $(\mathrm{m} / \mathrm{s})$. Sometimes it is more convenient to express speed in other units, such as kilometers per hour (km / h). Table $\mathbf{1}$ shows some convenient units for certain types of motion.

5PEED-EQUATION

Solve for Speed A car traveling at a constant speed covers a distance of 750 m in 25 s . What is the car's speed?

This is what you know:

$$
\text { distance: } d=750 \mathrm{~m}
$$

time: $\boldsymbol{t}=25 \mathrm{~s}$
This is what you need to find:
speed: s
Use this formula:
$s=\frac{d}{t}$
Substitute:
the values of d and t into the formula and divide.

Determine the units:

$$
s=\frac{750}{25}=30
$$

units of $s=\frac{(\text { units of } d)}{(\text { units of } t)}=\frac{\mathrm{m}}{\mathrm{s}}=\mathrm{m} / \mathrm{s}$

Answer: The car's speed is $30 \mathrm{~m} / \mathrm{s}$.

For more practice problems, go to page 834, and visit gpscience.com/extra_problems.

Practice Problems

1. A passenger elevator travels from the first floor to the $60^{\text {th }}$ floor, a distance of 210 m , in 35 s . What is the elevator's speed?
2. A motorcycle is moving at a constant speed of $40 \mathrm{~km} / \mathrm{h}$. How long does it take the motorcycle to travel a distance of 10 km ?
3. How far does a car travel in 0.75 h if it is moving at a constant speed of $88 \mathrm{~km} / \mathrm{h}$?
4. Challenge A long-distance runner is running at a constant speed of $5 \mathrm{~m} / \mathrm{s}$. How far does the runner travel in 10 minutes?

Table 1 Examples of Units of Speed

Unit of Speed	Examples of Uses	Approximate Speed
km / s	rocket escaping Earth's atmosphere	$11.2 \mathrm{~km} / \mathrm{s}$
km / h	car traveling at highway speed	$100 \mathrm{~km} / \mathrm{h}$
$\mathrm{cm} / \mathrm{yr}$	geological plate movements	$2 \mathrm{~cm} / \mathrm{yr}-17 \mathrm{~cm} / \mathrm{yr}$

Motion with Constant Speed Suppose you are in a car traveling on a nearly empty freeway. You look at the speedometer and see that the car's speed hardly changes. If the car neither slows down nor speeds up, the car is traveling at a constant speed. If you are traveling at a constant speed, you can measure your speed over any distance interval.

Changing Speed Usually speed is not constant. Think about riding a bicycle for a distance of 5 km , as in Figure 3. As you start out, your speed increases from $0 \mathrm{~km} / \mathrm{h}$ to $20 \mathrm{~km} / \mathrm{h}$. You slow down to $10 \mathrm{~km} / \mathrm{h}$ as you pedal up a steep hill and speed up to $30 \mathrm{~km} / \mathrm{h}$ going down the other side of the hill. You stop for a red light, speed up again, and move at a constant speed for a while. Finally, you slow down and then stop. Checking your watch, you find that the trip took 15 min . How would you express your speed on such a trip? Would you use your fastest speed, your slowest speed, or some speed between the two?

Speed Changing over Distance

Sciences nline

Topic: Running Speeds Visit gpscience.com for Web links to information about the running speeds of various animals.

Activity In your Science Journal, describe how running fast benefits the survival of animals in the wild.

Figure 3 The graph shows how the speed of a cyclist changes during a trip. Explain how you describe the speed of an object when the speed is changing.

Figure 4 The speed shown on the speedometer gives the instantaneous speed-the speed at one instant in time.

Mini

 14ABDescribing the Motion of a Car

Procedure

1. Mark your starting point on the floor with tape.
2. At the starting line, give your toy car a gentle push forward. At the same time, start your stopwatch.
3. Stop timing when the car comes to a complete stop. Mark the spot on the floor at the front of the car with a pencil. Record the time for the entire trip.
4. Use a meterstick to measure the distance to the nearest tenth of a centimeter and convert it to meters.
Analysis
Calculate the speed. How would the speed differ if you repeated your experiment in exactly the same way but the car traveled in the opposite direction?

Average Speed Average speed describes speed of motion when speed is changing. Average speed is the total distance traveled divided by the total time of travel. It can be calculated using the relationships among speed, distance, and time. For the bicycle trip just described, the total distance traveled was 5 km and the total time was $1 / 4 \mathrm{~h}$, or 0.25 h . The average speed was:

$$
s=\frac{d}{t}=\frac{5 \mathrm{~km}}{0.25 \mathrm{~h}}=20 \mathrm{~km} / \mathrm{h}
$$

Instantaneous Speed Suppose you watch a car's speedometer, like the one in Figure 4, go from $0 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$. A speedometer shows how fast a car is going at one point in time or at one instant. The speed shown on a speedometer is the instantaneous speed. Instantaneous speed is the speed at a given point in time.

Changing Instantaneous Speed When something is speeding up or slowing down, its instantaneous speed is changing. The speed is different at every point in time. If an object is moving with constant speed, the instantaneous speed doesn't change. The speed is the same at every point in time.

Reading Check
 What are two examples of motion in which the instantaneous speed changes?

Graphing Motion

The motion of an object over a period of time can be shown on a distance-time graph. Time is plotted along the horizontal axis of the graph and the distance traveled is plotted along the vertical axis of the graph. If the object moves with constant speed, the increase in distance over equal time intervals is the same. As a result, the line representing the object's motion is a straight line.

For example, the graph shown in Figure 5 represents the motion of three swimmers during a 30 -min workout. The straight red line represents the motion of Mary, who swam with a constant speed of $80 \mathrm{~m} / \mathrm{min}$ over the $30-\mathrm{min}$ workout. The straight blue line represents the motion of Kathy, who swam with a constant speed of $60 \mathrm{~m} / \mathrm{min}$ during the workout.

The graph shows that the line representing the motion of the faster swimmer is steeper. The steepness of a line on a graph is the slope of the line. The slope of a line on a distance-time graph equals the speed. A horizontal line on a distance-time graph has zero slope, and represents an object at rest. Because Mary has a larger speed than Kathy, the line representing her motion has a larger slope.

Changing Speed The green line represents the motion of Julie, who did not swim at a constant speed. She covered 400 m at a constant speed during the first 10 min , rested for the next 10 min , and then covered 800 m during the final 10 min . During the first 10 min , her speed was less than Mary's or Kathy's, so her line has a smaller slope. During the middle period her speed is zero, so her line over this interval is horizontal and has zero slope. During the last time interval she swam as fast as Mary, so that part of her line has the same slope.

Plotting a Distance-Time Graph On a distance-time graph, the distance is plotted on the vertical axis and the time on the horizontal axis. Each axis must have a scale that covers the range of numbers to be plotted. In Figure 5 the distance scale must range from 0 to $2,400 \mathrm{~m}$ and the time scale must range from 0 to 30 min . Then, each axis can be divided into equal time intervals to represent the data. Once the scales for each axis are in place, the data points can be plotted. After plotting the data points, draw a line connecting the points.

Topic: Olympic Swimming Speeds
Visit gpscience.com for Web links to information about the speeds of Olympic swimmers over the past 60 years.

Activity Make a speed-year graph showing the swimming speeds over time. Are there any trends in the speed data?

Velocity

You turn on the radio and hear the tail end of a news story about a hurricane, like the one in Figure 6, that is approaching land. The storm, traveling at a speed of $20 \mathrm{~km} / \mathrm{h}$, is located 100 km east of your location. Should you be worried?

Unfortunately, you don't have enough information to answer that question. Knowing only the speed of the storm isn't much help. Speed describes only how fast something is moving. To decide whether you need to move to a safer area, you also need to know the direction that the storm is moving. In other words, you need to

Figure 6 The speed of a storm is not enough information to plot the path. The direction the storm is moving must be known, too.

Figure 7 For an object to have constant velocity, speed and direction must not be changing.
know the velocity of the storm. Velocity includes the speed of an object and the direction of its motion.

Escalators like the one shown in Figure $\mathbf{7}$ are found in shopping malls and airports. The two sets of passengers pictured are moving at constant speed, but in opposite directions. The speeds of the passengers are the same, but their velocities are different because the passengers are moving in different directions.

Because velocity depends on direction as well as speed, the velocity of an object can change even if the speed of the object remains constant. For example, look at Figure 7. The race car has a constant speed and is going around an oval track. Even though the speed remains constant, the velocity changes because the direction of the car's motion is changing constantly.

Reading Check How are velocity and speed different?

The people on these two escalators have the same speed. However, their velocities are different because they are traveling in opposite directions.

Motion of Earth's Crust

Can you think of something that is moving so slowly you cannot detect its motion, yet you can see evidence of its motion over long periods of time? As you look around the surface of Earth from year to year, the basic structure of the planet seems the same. Mountains, plains, lakes, and oceans seem to remain unchanged over hundreds of years. Yet if you examined geological evidence of what Earth's surface looked like over the past 250 million years, you would see that large changes have occurred. Figure 8 shows how, according to the theory of plate tectonics, the positions of landmasses have changed during this time. Changes in the landscape occur constantly as continents drift slowly over Earth's surface. However, these changes are so gradual that you do not notice them.

About 250 million years ago, the continents formed a supercontinent called Pangaea.

Figure 8 Geological evidence suggests that Earth's continents have moved slowly over time.

Figure 9 Earth's crust floats over a puttylike interior.

Moving Continents How can continents move around on the surface of Earth? Earth is made of layers, as shown in Figure 9. The outer layer is the crust, and the layer just below the crust is called the upper mantle. Together the crust and the top part of the upper mantle are called the lithosphere. The lithosphere is broken into huge sections called plates that slide slowly on the puttylike layers just below. If you compare Earth to an egg, these plates are about as thick as the eggshell. These moving plates cause geological changes such as the formation of mountain ranges, earthquakes, and volcanic eruptions.

The movement of the plates also is changing the size of the oceans and the shapes of the continents. The Pacific Ocean is getting smaller while the Atlantic Ocean is getting larger. The movement of the plates also changes the shape of the continents as they collide and spread apart.

Plates move so slowly that their speeds are given in units of centimeters per year. In California, two plates slide past each other along the San Andreas Fault with an average relative speed of about 1 cm per year. The Australian Plate's movement is one of the fastest, pushing Australia north at an average speed of about 17 cm per year.

5ection

Summary

Position and Motion

- The position of an object is determined relative to a reference point.
- Motion occurs when an object changes its position relative to a reference point.
- Distance is the length of the path an object has traveled. Displacement is the distance and direction of a change in position.
Speed and Velocity
- Speed is the distance an object travels per unit time and is given by this equation:

$$
s=\frac{d}{t}
$$

- The velocity of an object includes the object's speed and its direction of motion relative to a reference point.
Graphing Motion
- On a distance-time graph, time is the horizontal axis and distance is the vertical axis.
- The slope of a line plotted on a distance-time graph is the speed.

Self Check

1. Infer whether the size of an object's displacement could be greater than the distance the object travels.
2. Describe the motion represented by a horizontal line on a distance-time graph.
3. Explain whether, during a trip, a car's instantaneous speed can ever be greater than its average speed.
4. Describe the difference between average speed and constant speed.
5. Think Critically You are walking toward the back of a bus that is moving forward with a constant velocity. Describe your motion relative to the bus and relative to a point on the ground.

Applying Math

6. Calculate Speed Michiko walked a distance of 1.60 km in 30 min . Find her average speed in m / s.
7. Calculate Distance A car travels at a constant speed of $30.0 \mathrm{~m} / \mathrm{s}$ for 0.8 h . Find the total distance traveled in km .

Acceleration

Reading Guide

What You'll Learn

■ Identify how acceleration, time, and velocity are related.

- Explain how positive and negative acceleration affect motion.
- Describe how to calculate the acceleration of an object.

Why It's Important

Acceleration occurs all around you as objects speed up, slow down, or change direction.

Review Vocabulary

speed: rate of change of position; can be calculated by dividing the distance traveled by the time taken to travel the distance

New Vocabulary

- acceleration

Acceleration, Speed, and Velocity

You're sitting in a car at a stoplight when the light turns green. The driver steps on the gas pedal and the car starts moving faster and faster. Just as speed is the rate of change of position, acceleration is the rate of change of velocity. When the velocity of an object changes, the object is accelerating.

Remember that velocity includes the speed and direction of an object. Therefore, a change in velocity can be either a change in how fast something is moving or a change in the direction it is moving. Acceleration occurs when an object changes its speed, its direction, or both.

Speeding Up and Slowing Down When you think of acceleration, you probably think of something speeding up. However, an object that is slowing down also is accelerating.

Imagine a car traveling through a city. If the speed is increasing, the car has positive acceleration. When the car slows down its speed is decreasing and the car has negative acceleration. In both cases the car is accelerating because its speed is changing.

Acceleration also has direction, just as velocity does. If the acceleration is in the same direction as the velocity, as in Figure 10, the speed increases and the acceleration is positive. If the speed decreases, the acceleration is in the opposite direction from the velocity, and the acceleration is negative for the car shown in Figure 10.

Figure 10 These cars are both accelerating because their speed is changing.

The speed of this car is increasing. The car has positive acceleration.

The speed of this car is decreasing. The car has negative acceleration.

Figure 11 The speed of the horses in this carousel is constant, but the horses are accelerating because their direction is changing constantly.

INTEGRATE

 ilstoryAircraft Carriers An aircraft carrier provides a landing strip for airplanes to land and take off at sea. The carrier must be equipped to provide enough negative acceleration to stop a moving plane. The carrier also must be equipped to quickly accelerate planes to allow them to take off on a short runway. In 1911, American pilot Eugene Ely landed on a specially equipped deck on the battleship Pennsylvania. The experiment was successful, and today aircraft carriers are an important part of navies worldwide.

Changing Direction A change in velocity can be either a change in how fast something is moving or a change in the direction of movement. Any time a moving object changes direction, its velocity changes and it is accelerating. Think about a horse on a carousel. Although the horse's speed remains constant, the horse is accelerating because it is changing direction constantly as it travels in a circular path, as shown in Figure 11. In the same way, Earth is accelerating constantly as it orbits the Sun in a nearly circular path.

Graphs of speed versus time can provide information about accelerated motion. The shape of the plotted curve shows when an object is speeding up or slowing down. Figure 12 shows how motion graphs are constructed.

Calculating Acceleration

Acceleration is the rate of change in velocity. To calculate the acceleration of an object, the change in velocity is divided by the length of the time interval over which the change occurred.

To calculate the change in velocity, subtract the initial veloc-ity-the velocity at the beginning of the time interval-from the final velocity-the velocity at the end of the time interval. Let v_{i} stand for the initial velocity and v_{f} stand for the final velocity. Then the change in velocity is:

$$
\begin{aligned}
\text { change in velocity } & =\text { final velocity }- \text { initial velocity } \\
& =v_{\mathrm{f}}-v_{\mathrm{i}}
\end{aligned}
$$

Using this expression for the change in velocity, the acceleration can be calculated from the following equation:

Acceleration Equation

acceleration (in meters/second ${ }^{2}$) $=\frac{\text { change in velocity (in meters/second) }}{\text { time } \text { (in seconds) }}$

$$
\boldsymbol{a}=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t}
$$

Recall that velocity includes both speed and direction. However, if the direction of motion doesn't change and the object moves in a straight line, the change in velocity can be calculated from the change in speed. The change in velocity then is the final speed minus the initial speed.

The unit for acceleration is a unit for velocity divided by a unit for time. In SI units, velocity has units of m / s, and time has units of s , so acceleration has units of $\mathrm{m} / \mathrm{s}^{2}$.

Figure 12

Acceleration can be positive, negative, or zero depending on whether an object is speeding up, slowing down, or moving at a constant speed. If the speed of an object is plotted on a graph, with time along the horizontal axis, the slope of the line is related to the acceleration.

A The car in the photograph on the right is maintaining a constant speed of about $90 \mathrm{~km} / \mathrm{h}$. Because the speed is constant, the car's acceleration is zero. A graph of the car's speed with time is a horizontal line.
(B) The green graph shows how the speed of a bouncing ball changes with time as it falls from the top of a bounce. The ball speeds up as gravity pulls the ball downward, so the acceleration is positive. For positive acceleration, the plotted line slopes upward to the right.

Figure 13 A speed-time graph tells you if acceleration is positive or negative.

Calculating Positive Acceleration How is the acceleration for an object that is speeding up different from that of an object that is slowing down? Suppose the jet airliner in Figure 13 starts at rest at the end of a runway and reaches a speed of $80 \mathrm{~m} / \mathrm{s}$ in 20 s . The airliner is traveling in a single direction down the runway, so its change in velocity can be calculated from its change in speed. Because it started from rest, its initial speed was zero. Its acceleration can be calculated as follows:

$$
a=\frac{\left(v_{\mathrm{f}}-v_{\mathrm{i}}\right)}{t}=\frac{(80 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s})}{20 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

The airliner is speeding up, so the final speed is greater than the initial speed and the acceleration is positive.

Calculating Negative Acceleration Now imagine that the skateboarder in Figure $\mathbf{1 3}$ is moving in a straight line at a constant speed of $3 \mathrm{~m} / \mathrm{s}$ and comes to a stop in 2 s . The final speed is zero and the initial speed was $3 \mathrm{~m} / \mathrm{s}$. The skateboarder's acceleration is calculated as follows:

$$
a=\frac{\left(v_{\mathrm{f}}-v_{\mathrm{i}}\right)}{t}=\frac{(0 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s})}{2 \mathrm{~s}}=-1.5 \mathrm{~m} / \mathrm{s}^{2}
$$

The skateboarder is slowing down, so the final speed is less than the initial speed and the acceleration is negative. The acceleration always will be positive if an object is speeding up and negative if the object is slowing down.

Amusement Park Acceleration

Riding roller coasters in amusement parks can give you the feeling of danger, but these rides are designed to be safe. Engineers use the laws of physics to design amusement park rides that are thrilling, but harmless. Roller coasters are constructed of steel or wood. Because wood is not as rigid as steel, wooden roller coasters do not have hills that are as high and steep as some steel roller coasters have. As a result, the highest speeds and accelerations usually are produced on steel roller coasters.

Steel roller coasters can offer multiple steep drops and inversion loops, which give the rider large accelerations. As the rider moves down a steep hill or an inversion loop, he or she will accelerate toward the ground due to gravity. When riders go around a sharp turn, they also are accelerated. This acceleration makes them feel as if a force is pushing them toward the side of the car. Figure 14 shows one of the fastest roller coasters in the United States.

Reading Check

What happens when riders on a roller coaster go around a sharp turn?

Figure 14 This roller coaster can reach a speed of about $200 \mathrm{~km} / \mathrm{h}$ in 4 s .
section

Summary

Acceleration, Speed, and Velocity

- Acceleration is the rate of change of velocity.
- A change in velocity occurs when the speed of an object changes, or its direction of motion changes, or both occur.
- The speed of an object increases if the acceleration is in the same direction as the velocity.
- The speed of an object decreases if the acceleration and the velocity of the object are in opposite directions.

Calculating Acceleration

- Acceleration can be calculated by dividing the change in velocity by the time according to the following equation:

$$
a=\frac{v_{f}-v_{i}}{t}
$$

- The SI unit for acceleration is $\mathrm{m} / \mathrm{s}^{2}$.
- If an object is moving in a straight line, the change in velocity equals the final speed minus the initial speed.
review

Self Check

1. Describe three ways to change the velocity of a moving car.
2. Determine the change in velocity of a car that starts at rest and has a final velocity of $20 \mathrm{~m} / \mathrm{s}$ north.
3. Explain why streets and highways have speed limits rather than velocity limits.
4. Describe the motion of an object that has an acceleration of $0 \mathrm{~m} / \mathrm{s}^{2}$.
5. Think Critically Suppose a car is accelerating so that its speed is increasing. Describe the plotted line on a distance-time graph of the motion of the car.

Applying Math

6. Calculate Time A ball is dropped from a cliff and has an acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take the ball to reach a speed of $24.5 \mathrm{~m} / \mathrm{s}$?
7. Calculate Speed A sprinter leaves the starting blocks with an acceleration of $4.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the sprinter's speed 2 s later?

Motion and Forces

Reading Guide

What You'll Learn
 - Explain how force and motion are related.
 - Describe what inertia is and how it is related to Newton's first law of motion.
 - Identify the forces and motion that are present during a car crash.

Why It's Important
Force and motion are directly
linked-without force, you cannot have motion.

Review Vocabulary

 scientific law: statement about something that happens in nature that seems to be true all the time
New Vocabulary
 - force
 - net force
 - balanced force
 - inertia

Figure 15 This ball is hit with a force. The racket strikes the ball with a force in the opposite direction of its motion. As a result, the ball changes the direction it is moving.

What is force?

Passing a basketball to a team member or kicking a soccer ball into the goal are examples of applying force to an object. A force is a push or pull. In both examples, the applied force changes the movement of the ball. Sometimes it is obvious that a force has been applied. But other forces aren't as noticeable. For instance, are you conscious of the force the floor exerts on your feet? Can you feel the force of the atmosphere pushing against your body or gravity pulling on your body? Think about all the forces you exert in a day. Every push, pull, stretch, or bend results in a force being applied to an object.

Changing Motion What happens to the motion of an object when you exert a force on it? A force can cause the motion of an object to change. Think of hitting a ball with a racket, as in Figure 15. The racket strikes the ball with a force that causes the ball to stop and then move in the opposite direction. If you have played billiards, you know that you can force a ball at rest to roll into a pocket by striking it with another ball. The force of the moving ball causes the ball at rest to move in the direction of the force. In these cases, the velocities of the ball and the billiard ball were changed by a force.

Figure 16 Forces can be balanced and unbalanced.

A These students are pushing on the box with an equal force but in opposite directions. Because the forces are balanced, the box does not move.

B These students are pushing on the box with unequal forces in opposite directions. The box will be moved in the direction of the larger force.

Balanced Forces Force does not always change velocity. In Figure 16A, two students are pushing on opposite sides of a box. Both students are pushing with an equal force but in opposite directions. When two or more forces act on an object at the same time, the forces combine to form the net force. The net force on the box in Figure 16A is zero because the two forces cancel each other. Forces on an object that are equal in size and opposite in direction are called balanced forces.

Unbalanced Forces Another example of how forces combine is shown in Figure 16B. When two students are pushing with unequal forces in opposite directions, a net force occurs in the direction of the larger force. In other words, the student who pushes with a greater force will cause the box to move in the direction of the force. The net force that moves the box will be the difference between the two forces because they are in opposite directions. They are considered to be unbalanced forces.

In Figure 16C, the students are pushing on the box in the same direction. These forces are combined, or added together, because they are exerted on the box in the same direction. The net force that acts on this box is found by adding the two forces together.

Reading Check Give another example of an unbalanced force.

C These students are pushing on the box in the same direction. The combined forces will cause the box to move.

Sciences nline
 Topic: Forces and Fault Lines

Visit gpscience.com for Web links to information about the unbalanced forces that occur along Earth's fault lines.

Activity Use inexpensive materials such as bars of soap to model the forces and movements along the fault lines. Share your models and demonstrations with your class.

Mini

Observing Inertia

Procedure

1. Create an inclined plane between 25° and 50° using a board and textbooks. Place a stop block (brick or other heavy object) at the end of the plane.
2. Place a small object in a cart and allow both to roll down the plane. Record the results in your Science Journal.
3. Secure the object in the cart with rubber bands (safety belts). Allow both to roll down the plane again. Record the results.

Analysis

1. Identify the forces acting on the object in both runs.
2. Explain why it is important to wear safety belts in a car. Home

Figure 17 This racer is skidding because of inertia. The bike tends to move in a straight line with constant speed despite the efforts of the rider to steer the bike around the curve.

Inertia and Mass

The dirt bike in Figure 17 is sliding on the track. This sliding bike demonstrates the property of inertia. Inertia (ih NUR shuh) is the tendency of an object to resist any change in its motion. If an object is moving, it will have uniform motion. It will keep moving at the same speed and in the same direction unless an unbalanced force acts on it. The velocity of the object remains constant unless a force changes it. If an object is at rest, it tends to remain at rest. Its velocity is zero unless a force makes it move.

Does a bowling ball have the same inertia as a table-tennis ball? Why is there a difference? You couldn't change the motion of a bowling ball much by swatting it with a table-tennis paddle. However, you easily could change the motion of the table-tennis ball. A greater force would be needed to change the motion of the bowling ball because it has greater inertia. Why is this? Recall that mass is the amount of matter in an object, and a bowling ball has more mass than a table-tennis ball does. The inertia of an object is related to its mass. The greater the mass of an object is, the greater its inertia.

Newton's Laws of Motion Forces change the motion of an object in specific ways. The British scientist Sir Isaac Newton (1642-1727) was able to state rules that describe the effects of forces on the motion of objects. These rules are known as Newton's laws of motion. They apply to the motion of all objects you encounter every day such as cars and bicycles, as well as the motion of planets around the Sun.

Newton's First Law of Motion Newton's first law of motion states that an object moving at a constant velocity keeps moving at that velocity unless an unbalanced net force acts on it. If an object is at rest, it stays at rest unless an unbalanced net force acts on it. Does this sound familiar? It is the same as the earlier discussion of inertia. This law is sometimes called the law of inertia. You probably have seen and felt this law at work without even knowing it. Figure $\mathbf{1 8}$ shows a billiard ball striking the other balls in the opening shot. What are the forces involved when the cue ball strikes the other balls? Are the forces balanced or unbalanced? How does this demonstrate the law of inertia?

Reading Check What is Newton's first law of motion?

Figure 18 The inertia of the billiard balls causes them to remain at rest until a force is exerted on them by the cue ball.

Figure 19 The crash dummy is not restrained in this low-speed crash. Inertia causes the dummy to slam into the steering wheel. Explain how safety belts can help keep passengers from being seriously injured.

What happens in a crash?

The law of inertia can explain what happens in a car crash. When a car traveling about $50 \mathrm{~km} / \mathrm{h}$ collides head-on with something solid, the car crumples, slows down, and stops within approximately 0.1 s . Any passenger not wearing a safety belt continues to move forward at the same speed the car was traveling. Within about 0.02 s ($1 / 50$ of a second) after the car stops, unbelted passengers slam into the dashboard, steering wheel, windshield, or the backs of the front seats, as in Figure 19. They are traveling at the car's original speed of $50 \mathrm{~km} / \mathrm{h}$-about the same speed they would reach falling from a three-story building.

Safety Belts The crash dummy wearing a safety belt in Figure 20 is attached to the car and slows down as the car slows down. The force needed to slow a person from $50 \mathrm{~km} / \mathrm{h}$ to zero in 0.1 s is equal to 14 times the force that gravity exerts on the person. The belt loosens a little as it restrains the person, increasing the time it takes to slow the person down. This reduces the force exerted on the person. The safety belt also prevents the person from being thrown out of the car. Car-safety experts say that about half the people who die in car crashes would survive if they wore safety belts. Thousands of others would suffer fewer serious injuries.

Figure 20 These crash dummies were restrained safely with safety belts in this low-speed crash. Usually humans would have fewer injuries if they were restrained safely during an accident.

review

Summary

What is Force?

- A force is a push or a pull on an object.
- The net force on an object is the combination of all the forces acting on the object.
- When the forces on an object are balanced, the net force on the object is zero.
- Unbalanced forces cause the motion of objects to change.
Inertia and Newton's First Law of Motion
- The inertia of an object is the tendency of an object to resist a change in motion.
- The larger the mass of an object, the greater its inertia.
- Newton's first law of motion states that the motion of an object at rest or moving with constant velocity will not change unless an unbalanced net force acts on the object.
- In a car crash, inertia causes an unrestrained passenger to continue moving at the speed of the car before the crash.

Self Check

1. Infer whether the inertia of an object changes as the object's velocity changes.
2. Explain whether or not there must be an unbalanced net force acting on any moving object.
3. Explain Can there be forces acting on an object if the object is at rest?
4. Infer the net force on a refrigerator if you push on the refrigerator and it doesn't move.
5. Think Critically Describe three situations in which a force changes the velocity of an object.

Applying Math

6. Calculate Net Force Two students push on a box in the same direction, and one pushes in the opposite direction. What is the net force on the box if each pushes with a force of 50 N ?
7. Calculate Acceleration The downward force of gravity and the upward force of air resistance on a ball are both 5 N . What is the ball's acceleration?

Force Ahy Accillandion

If you stand at a stoplight, you will see cars stopping for red lights and then taking off when the light turns green. What makes the cars slow down? What makes them speed up? Can a study of unbalanced forces lead to a better understanding of these everyday activities?

(3) Real-World Question

How does an unbalanced force on a book affect its motion?

Goals

\square Observe the effect of force on the acceleration of an object.

- Interpret the data collected for each trial.

Materials

tape
paper clip
10-N spring scale large book
this science book
triple-beam balance
*electronic balance
*Alternate materials

Safety Precautions

Proper eye protection should be worn at all times while performing this lab.

(ㅈ) Procedure

1. With a piece of tape, attach the paper clip to your textbook so that the paper clip is just over the edge of the book.
2. Prepare a data table with the following headings: Force, Mass.
3. If available, use a large balance to find the mass of this science book.
4. Place the book on the floor or on the surface of a long table. Use the paper clip to hook the spring scale to the book.

5. Pull the book across the floor or table at a slow but constant velocity. While pulling, read the force you are pulling with on the spring scale and record it in your table.
6. Repeat step 5 two more times, once accelerating slowly and once accelerating quickly. Be careful not to pull too hard. Your spring scale will read only up to 10 N .
7. Place a second book on top of the first book and repeat steps 3 through 6.

(2) Conclude and Apply

1. Organize the pulling forces from greatest to least for each set of trials. Do you see a relationship between force and acceleration? Explain your answer.
2. Explain how adding the second book changed the results.

Your Data

Compare your conclusions with those of other students in your class. For more help, refer to the Science Skill Handbook.

Design Your Own

Comparing Montion from Differemit Forces

Goals

■ Identify several forces that you can use to propel a small toy car across the floor.

- Demonstrate the motion of the toy car using each of the forces.
- Graph the position versus time for each force.
- Compare the motion of the toy car resulting from each force.

Possible Materials

small toy car
ramps or boards
of different lengths
springs or rubber bands
string
stopwatch
meterstick or tape measure graph paper

Safety Precautions

를

(3) Real-World Question

Think about a small ball. How many ways could you exert a force on the ball to make it move? You could throw it, kick it, roll it down a ramp, blow it with a large fan, etc. Do you think the distance and speed of the ball's motion will be the same for all of these forces? Do you think the acceleration of the ball would be the same for all of these types of forces?

(3) Form a Hypothesis

Based on your reading and observations, state a hypothesis about how a force can be applied that will cause the toy car to go fastest.

(3) Test Your Hypothesis

Make a Plan

1. As a group, agree upon the hypothesis and decide how you will test it. Identify which results will confirm the hypothesis that you have written.
2. List the steps you will need to test your hypothesis. Be sure to include a control run. Be specific. Describe exactly what you will do in each step. List your materials.
3. Prepare a data table in your Science Journal to record your observations.

4. Read the entire experiment to make sure all steps are in logical order and will lead to a useful conclusion.
5. Identify all constants, variables, and controls of the experiment. Keep in mind that you will need to have measurements at multiple points. These points are needed to graph your results. You should make sure to have several data points taken after you stop applying the force and before the car starts to slow down. It might be useful to have several students
 taking measurements, making each responsible for one or two points.

Follow Your Plan

1. Make sure your teacher approves your plan before you start.
2. Carry out the experiment as planned.
3. While doing the experiment, record your observations and complete the data tables in your Science Journal.

© Analyze Your Data

1. Graph the position of the car versus time for each of the forces you applied. How can you use the graphs to compare the speeds of the toy car?
2. Calculate the speed of the toy car over the same time interval for each of the forces that you applied. How do the speeds compare?

(2) Conclude and Apply

1. Evaluate Did the speed of the toy car vary depending upon the force applied to it?
2. Determine For any particular force, did the speed of the toy car change over time? If so, how did the speed change? Describe how you can use your graphs to answer these questions.
3. Draw Conclusions Did your results support your hypothesis? Why or why not?

Compare your data with those of other students. Discuss how the forces you applied might be different from those others applied and how that affected your results.

Science

 A Brave and Startling Truth

 A Brave and Startling Truth by Maya Angelou

 by Maya Angelou}

We, this people, on a small and lonely planet Traveling through casual space
Past aloof stars, across the way of indifferent suns To a destination where all signs tell us It is possible and imperative that we learn A brave and startling truth ...

When we come to it
Then we will confess that not the Pyramids
With their stones set in mysterious perfection ...
Not the Grand Canyon
Kindled into delicious color
By Western sunsets
These are not the only wonders of the world ...
When we come to it
We, this people, on this minuscule and kithless ${ }^{1}$ globe ...
We this people on this mote ${ }^{2}$ of matter
When we come to it
We, this people, on this wayward ${ }^{3}$, floating body Created on this earth, of this earth
Have the power to fashion for this earth A climate where every man and every woman Can live freely without sanctimonious piety ${ }^{4}$

Without crippling fear
When we come to it
We must confess that we are the possible
We are the miraculous, the true wonder of the world That is when, and only when
We come to it.

Understanding Literature

Descriptive Writing The poet names some special places on Earth. These places, although marvelous, fall short of being really wonderful. How does Angelou contrast Earth's position within the universe to emphasize the importance of people?

Respond to the Reading

1. What adjectives does the poet use to describe Earth?
2. What does the poet believe are the true wonders of the world?
3. Linking Science and Writing Write a sixline poem that describes Earth's movement from the point of view of the Moon.

Sometimes a person doesn't need to see movement to know that something has moved. Even though we don't necessarily see Earth's movement, we know Earth moves relative to a reference point such as the Sun. If the Sun is the reference point, Earth moves because the Sun appears to change its position in the sky. The poem describes Earth's movement from a reference point outside of Earth, somewhere in space.

1 to be without friends or neighbors
2 small particle
3 wanting one's own way in spite of the advice or wishes of another

4 a self-important show of being religious

Reviewing Main Ideas

Section 1 Describing Motion

1. Motion is a change of position of a body. Distance is the measure of how far an object moved. Displacement is the distance and
 direction of an object's change in position from the starting point.
2. A reference point must be specified in order to determine an object's position.
3. The speed of an object can be calculated from this equation:

$$
s=\frac{d}{t}
$$

4. The slope of a line on a distance-time graph is equal to the speed.
5. Velocity describes the speed and direction of a moving object.

Section 2 Acceleration

1. Acceleration occurs when an object changes speed or changes direction.
2. An object speeds up if its acceleration is in the direction of its motion.

3. An object slows down if its acceleration is opposite to the direction of its motion.
4. Acceleration is the rate of change of velocity, and is calculated from this equation:

$$
a=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t}
$$

Section 3 Motion and Forces

1. A force is a push or a pull.
2. The net force acting on an object is the combination of all the forces acting on the object.
3. The forces on an object are balanced if the net force is zero.
4. Inertia is the resistance of an object to a change in motion.
5. According to Newton's first law of motion, the motion of an object does not change unless an unbalanced net force acts on the object.

FOLDABLES Use the Foldable that you made at the beginning of this chapter to help you review motion.

Using Vocabulary

acceleration p. 47
average speed p. 42
balanced force p. 53
displacement p. 39
distance p. 39
force p. 52
inertia p. 54
instantaneous speed p. 42
net force p. 53
speed p. 39
velocity p. 44

Compare and contrast the following pairs of vocabulary words.

1. speed—velocity
2. distance-displacement
3. average speed-instantaneous speed
4. balanced force-net force
5. force-inertia
6. acceleration-velocity
7. velocity—instantaneous speed
8. force-net force
9. force-acceleration

Checking Concepts

Choose the word or phrase that best answers the question.
10. Which of the following do you calculate when you divide the total distance traveled by the total travel time?
A) average speed
B) constant speed
C) variable speed
D) instantaneous speed
11. Which term below best describes the forces on an object with a net force of zero?
A) inertia
B) balanced forces
C) acceleration
D) unbalanced forces
12. Which of the following is a proper unit of acceleration?
A) $\mathrm{s} / \mathrm{km}^{2}$
B) km / h
C) $\mathrm{m} / \mathrm{s}^{2}$
D) cm / s
13. Which of the following is not used in calculating acceleration?
A) initial velocity
C) time interval
B) average speed
D) final velocity
14. In which of the following conditions does the car NOT accelerate?
A) A car moves at $80 \mathrm{~km} / \mathrm{h}$ on a flat, straight highway.
B) The car slows from $80 \mathrm{~km} / \mathrm{h}$ to $35 \mathrm{~km} / \mathrm{h}$.
C) The car turns a corner.
D) The car speeds up from $35 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$.
15. What is the tendency for an object to resist any change in its motion called?
A) net force
C) balanced force
B) acceleration
D) inertia
16. How can speed be defined?
A) acceleration/time
B) change in velocity/time
C) distance/time
D) displacement/time

Interpreting Graphics

Use the table below to answer question 17.
Distance-time for Runners

Time (s)	1	2	3	4
Sally's Distance (m)	2	4	6	8
Alonzo's Distance (m)	1	2	2	4

17. Make a distance-time graph that shows the motion of both runners. What is the average speed of each runner? Which runner stops briefly? Over what time interval do they both have the same speed?
18. Copy and complete this concept map on motion.

Thinking Critically

19. Evaluate Which of the following represents the greatest speed: $20 \mathrm{~m} / \mathrm{s}, 200 \mathrm{~cm} / \mathrm{s}$, or $0.2 \mathrm{~km} / \mathrm{s}$?
20. Recognize Cause and Effect Acceleration can occur when a car is moving at constant speed. What must cause this acceleration?
21. Explain why a passenger who is not wearing a safety belt will likely hit the windshield in a head-on collision.
22. Determine If you walked 20 m , took a book from a library table, turned around and walked back to your seat, what are the distance traveled and displacement?
23. Explain When you are describing the rate that a race car goes around a track, should you use the term speed or velocity to describe the motion?

Applying Math

24. Calculate Speed A cyclist must travel 800 km . How many days will the trip take if the cyclist travels $8 \mathrm{~h} /$ day at an average speed of $16 \mathrm{~km} / \mathrm{h}$?
25. Calculate Acceleration A satellite's speed is $10,000 \mathrm{~m} / \mathrm{s}$. After 1 min , it is $5,000 \mathrm{~m} / \mathrm{s}$. What is the satellite's acceleration?
26. Calculate Displacement A cyclist leaves home and rides due east for a distance of 45 km . She returns home on the same bike path. If the entire trip takes 4 h , what is her average speed? What is her displacement?
27. Calculate Velocity The return trip of the cyclist in question 13 took 30 min longer than her trip east, although her total time was still 4 h . What was her velocity in each direction?
Use the graph below to answer question 28.

Runners' Motion

28. Interpret a Graph Use the graph to determine which runner had the greatest speed.

chaprer
 2. Standardized Test Practice

Physical Science EOCT Practice

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. Sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$. How long does it take for the sound of thunder to travel 1485 m ?

SCSh5e
A. 45 s
B. 4.5 s
C. $4,900 \mathrm{~s}$
D. 0.22 s

Use the graph below to answer questions 2-4.
Speed Changing Over Distance

2. The graph shows how a cyclist's speed changed over distance of 5 km . What is the cyclist's average speed if the trip took 0.25 h ?
A. $2 \mathrm{~km} / \mathrm{h}$
B. $30 \mathrm{~km} / \mathrm{h}$
C. $20 \mathrm{~km} / \mathrm{h}$
D. $8 \mathrm{~km} / \mathrm{h}$

SPS8a
3. Once the trip was started, how many times did the cyclist stop?

SCSh3d
A. 0
B. 4
C. 2
D. 5
4. What was the fastest speed the cyclist traveled?

SCSh3d
A. $20 \mathrm{~km} / \mathrm{h}$
B. $30 \mathrm{~km} / \mathrm{h}$
C. $12 \mathrm{~km} / \mathrm{h}$
D. $10 \mathrm{~km} / \mathrm{h}$

Testraking Iif

Read Carefully Read each question carefully for full understanding.
5. A skier is going down a hill at a speed of $9 \mathrm{~km} / \mathrm{s}$. The hill gets steeper and her speed increases to $18 \mathrm{~m} / \mathrm{s}$ in 3 s . What is her acceleration?
A. $9 \mathrm{~m} / \mathrm{s}^{2}$
B. $3 \mathrm{~m} / \mathrm{s}^{2}$
C. $27 \mathrm{~m} / \mathrm{s}^{2}$
D. $6 \mathrm{~m} / \mathrm{s}^{2}$
6. Which of the following best describes an object with constant velocity?
A. It is changing direction.
B. Its acceleration is increasing.
C. Its acceleration is zero.
D. Its acceleration is negative.
7. Which of the following is a force?

SPS8b
A. friction
C. inertia
B. acceleration
D. velocity

Use the table below to answer questions 8 and 9.

Runner	Distance covered (km)	Time (min)
Daisy	12.5	42
Jane	7.8	38
Bill	10.5	32
Joe	8.9	30

8. What is Daisy's average speed?
A. $0.29 \mathrm{~km} / \mathrm{min}$
B. $530 \mathrm{~km} / \mathrm{min}$
C. $2.9 \mathrm{~km} / \mathrm{min}$
D. $3.4 \mathrm{~km} / \mathrm{min}$
9. Which runner has the fastest average speed?

SCSh3d
A. Daisy
C. Bill
B. Jane
D. Joe
10. The movement of the Australian plate pushes Australia north at an average speed of about 17 cm per year. What will Australia's displacement be in meters in 1,000 years?

SCSh5e
A. 170 m north
B. 170 m south
C. $1,700 \mathrm{~m}$ north
D. $1,700 \mathrm{~m}$ south

Part 2 Short Response/Grid/n

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

Use the graph below to answer questions 11 and 12.
Graphing Motion

11. The graph shows the motion of three swimmers during a $30-\mathrm{min}$ workout. Which swimmer had the highest average speed over the $30-\mathrm{min}$ time interval?
12. Did all the swimmers swim at a constant speed? Explain how you know.
13. Why is knowing just the speed at which a hurricane is traveling toward land not enough information to be able to warn people to evacuate?
14. If the speedometer on a car indicates a constant speed, can you be sure the car is not accelerating? Explain.
15. If a car is traveling at a speed of $40 \mathrm{~km} / \mathrm{h}$ and then comes to a stop in 5 s , what is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?

Part 3 Open Ended

Record your answers on a sheet of paper.
16. Describe three ways that your acceleration could change as you jog along a path through a park.
17. An object in motion slows down and comes to a stop. Use Newton's first law of motion to explain why this happens.
18. Give an example of a force applied to an object that does not change the object's velocity.
19. In an airplane flying at a constant speed, the force exerted by the engine pushing the airplane forward is equal to the opposite force of air resistance. Describe how these forces compare when the plane speeds up and slows down. In which direction is the net force on the airplane in each case?
20. Where would you place the location of a reference point in order to describe the motion of a space probe traveling from Earth to Jupiter? Explain your choice.

Use the table below to answer question 21.

Car	Mass $(\mathbf{k g})$	Stopping distance(m)
A	1000	80
B	1250	100
C	1500	120
D	2000	160

21. What is the relationship between a car's mass and its stopping distance? How can you explain this relationship?
22. Two cars approach each other. How does the speed of one car relative to the other compare with speed of the car relative to the ground?
