

This Teacher Resource Guide has been developed to provide supporting materials to help educators successfully implement the Indiana Academic Standards for Fourth Grade Mathematics – Adopted April 2014. These resources are provided to help you in your work to ensure all students meet the rigorous learning expectations set by the Academic Standards. Use of these resources is optional – teachers should decide which resource will work best in their school for their students.

This resource document is a living document and will be frequently updated. Please send any suggested links and report broken links to: Bill Reed Secondary Math Specialist Indiana Department of Education wreed@doe.in.gov 317-232-9114 The Indiana Department of Education would like to thank Ben Kemp, Jim Mirabelli, Shannon Nees, and Chelle Thomas for their contributions to this document.

The examples in this document are for illustrative purposes only, to promote a base of clarity and common understanding. Each example illustrates a standard but please note that examples are not intended to limit interpretation or classroom applications of the standards.

The links compiled and posted in this Resource Guide have been provided by the Department of Education and other sources. The DOE has not attempted to evaluate any posted materials. They are offered as samples for your reference only and are not intended to represent the best or only approach to any particular issue. The DOE does not control or guarantee the accuracy, relevance, timeliness, or completeness of information contained on a linked website; does not endorse the views expressed or services offered by the sponsor of a linked website; and cannot authorize the use of copyrighted materials contained in linked websites. Users must request such authorization from the sponsor of the linked website.

GOOD WEBSITES FOR MATHEMATICS:

http://nlvm.usu.edu/en/nav/vlibrary.html http://www.math.hope.edu/swanson/methods/applets.html http://learnzillion.com http://illuminations.nctm.org https://teacher.desmos.com http://illustrativemathematics.org http://www.insidemathematics.org https://www.khanacademy.org/ https://www.teachingchannel.org/ http://map.mathshell.org/materials/index.php https://www.istemnetwork.org/index.cfm http://www.azed.gov/azccrs/mathstandards/

	Indiana Academic Standard for Mathematics Fourth Grade – Adopted April 2014	Highlighted Vocabulary Words from the Standard Defined	Specific Fourth Grade Example for the Standard	Specific Fourth Grade Electronic Resource for the Standard
		Number S	ense	
MA.4.NS.1:	Read and write whole numbers up to 1,000,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 1,000,000.	 Whole numbers - the set of numbers 0, 1, 2, 3, 4, 5, etc. Word form - a number written in words Models - a picture representation of the number Standard form - a number written in a way that shows only its digits Expanded form - a number written as the sum of the values of its digits 	Write the numeral below in standard form and expanded form. <i>three hundred six thousand, two hundred forty-</i> <i>five.</i>	http://www.ixl.com/m ath/grade-4/word- names-for-numbers
MA.4.NS.2:	Compare two whole numbers up to 1,000,000 using >, =, and < symbols.		Compare: 304,625 340,652	http://www.ixl.com/m ath/grade-4/compare- numbers-up-to- billions
MA.4.NS.3:	Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Name and write mixed numbers using objects or pictures. Name and write mixed numbers as improper fractions using objects or pictures.	 Fraction - a number that names part of a whole Equivalent- having the same or equal value Mixed numbers- a number expressed as a whole number plus a fraction. Improper fraction- a fraction with a numerator greater than or equal to the denominator 	 a) Write 8 as a fraction such that the numerator is 8. b) Which numbers below are equivalent to 8? ¹⁶/₂, ²⁴/₈, ⁸/₈, ²⁴/₃, ⁴⁰/₅ c) Draw a picture to represent 3³/₄. Then write 3³/₄ as an improper fraction. 	http://www.ixl.com/m ath/grade-4/convert- between-improper- fractions-and-mixed- numbers

Indiana Department of Education

MA.4.NS.4:	Explain why a fraction, a/b , is equivalent to a fraction, $(n \times a)/(n \times b)$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use the principle to recognize and generate equivalent fractions. [In grade 4, limit denominators of fractions to 2, 3, 4, 5, 6, 8, 10, 25, 100.]	Denominator- the bottom number of a fraction that tells how many parts are in a whole.	 a) Which model shows that ³/₄ is equivalent to ⁶/₈? a) Which model shows that ³/₄ is equivalent to ⁶/₈? b) Name four fractions that are equivalent to ²/₅. 	https://www.illustrati vemathematics.org/ill ustrations/743
MA.4.NS.5:	Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators, or by comparing to a benchmark, such as 0, 1/2, and 1). Recognize comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions (e.g., by using a visual fraction model).	Numerator- the top number of a fraction; the number that tells how many parts of a whole are counted. Denominator- the bottom number of a fraction that tells how many parts are in a whole.	Use <, =, or > to compare each pair of fractions. Explain how you determined your answers. • $\frac{3}{4} - \frac{5}{8}$ • $\frac{2}{5} - \frac{4}{10}$ • $\frac{2}{3} - \frac{12}{25}$	https://www.illustrati vemathematics.org/ill ustrations/812
MA.4.NS.6:	Write tenths and hundredths in decimal and fraction notations. Use words, models, standard form and expanded form to represent decimal numbers to		Complete the table to show each number as a fraction and decimal.NumberFractionDecimalSix tenthsSix tenthsSix tenths	http://www.ixl.com/m ath/grade-4/convert- decimals-to-fractions- and-mixed-numbers
	hundredths. Know the fraction and decimal equivalents for halves and fourths (e.g., $1/2 = 0.5$ = 0.50, $7/4 = 13/4 = 1.75$).		Six tenths Five hundredths Thirty-two hundredths	

Indiana Academic Standards for Mathematics – Fourth Grade

Adopted April 2014 – Standards Resource Guide Document

-			
MA.4.NS.7:	Compare two decimals to hundredths by reasoning about their size based on the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions (e.g., by using a visual model).	Use <, =, or > to compare each pair of decimals. Explain how you determined your answers. • 0.1 0.7 • 0.1 0.7 • 0.3 0.30 • 0.5 0.05 • 0.25 0.31 • 1.2 2.1 • 2.2 2.1	http://www.ixl.com/m ath/grade-4/compare- decimal-numbers
MA.4.NS.8:	Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number.	a) List all of the factor pairs of 72.b) Is 42 a multiple of 3? Explain how you know.	http://www.ixl.com/m ath/grade-4/choose- the-multiples-of-a- given-number-up-to- 12
MA.4.NS.9:	Use place value understanding to round multi-digit whole numbers to any given place value.	 Round 457,208 to each place value below. hundred-thousand ten-thousand thousand hundred ten 	https://www.illustrati vemathematics.org/ill ustrations/1806

		Computa	ition	
MA.4.C.1:	Add and subtract multi-digit whole numbers fluently using a standard algorithmic approach.	Algorithmic approach - using a list of well-defined instructions or a step-by-step procedure to solve a problem. Fluently - efficient and accurate	Evaluate each expression. • 3,685 + 45,079 • 4,006 - 1,248 • 851,37 + 9,009 • 705,492 - 36,185	http://www.ixl.com/m ath/grade-4/add- numbers-up-to- millions http://www.ixl.com/m ath/grade-4/subtract- numbers-up-to- millions
MA.4.C.2:	Multiply a whole number of up to four digits by a one-digit whole number and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Describe the strategy and explain the reasoning.		 Evaluate each expression. 2,368 x 8 36 x 24 	http://www.ixl.com/m ath/grade- 4/properties-of- multiplication
MA.4.C.3:	Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning.	Quotient- When one number (dividend) is divided by another number (divisor), the result obtained is known as quotient Place value- the value of the place, or position, of a digit in a number	Evaluate each expression. • 4319 ÷ 7 • 2772 ÷ 8	http://www.ixl.com/m ath/grade- 4/properties-of- division
MA.4.C.4:	Multiply fluently within 100.	Fluently - efficient and accurate	Evaluate each expression. • 16 x 6 • 23 x 4 • 5 x 13 • 39 x 2	http://www.ixl.com/m ath/grade- 4/multiplication-facts- to-12

-		Auopteu April 2014 – Standarus	INC SC		
MA.4.C.5:	Add and subtract fractions with common denominators. Decompose a fraction into a sum of fractions with common denominators. Understand addition and subtraction of fractions as combining and separating parts referring to the same whole.	Decompose a fraction - find two (or more) fractions that when added together give you the fraction you started with.	a) b)	The fraction $\frac{5}{6}$ can be written as $\frac{1}{6} + \frac{4}{6}$. Write $\frac{5}{6}$ as a sum of two or more fractions in three different ways. $\frac{5}{8} + \frac{2}{8} =$ $\frac{4}{10} - \frac{3}{10} =$	http://www.ixl.com/m ath/grade-4/add-and- subtract-fractions- with-like- denominators
MA.4.C.6:	Add and subtract mixed numbers with common denominators (e.g. by replacing each mixed number with an equivalent fraction and/or by using properties of operations and the relationship between addition and subtraction).	Equivalent fraction - different fractions that name the same amount.		$5\frac{3}{4} + 2\frac{3}{4} =$ $6\frac{2}{3} - 4\frac{1}{3} =$	https://www.illustrati vemathematics.org/ill ustrations/874
MA.4.C.7:	Show how the order in which two numbers are multiplied (commutative property) and how numbers are grouped in multiplication (associative property) will not change the product. Use these properties to show that numbers can by multiplied in any order. Understand and use the distributive property.			One way to multiply $6 x 2 x 5$ is to first multiply 6 and 2, then multiply that value by 5. Describe another way to multiply these three numbers. What is $6 x 2 x 5$? Evaluate: $7(3 + 2)$ Evaluate: $5(8 - 6)$	http://www.ixl.com/m ath/grade- 3/properties-of- multiplication

		Algebraic Th	hinking	
MA.4.AT.1:	Solve real-world problems involving addition and subtraction of multi-digit whole numbers (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).		 a) Milagro has 52,500 baseball cards. Julie has 109,078 baseball cards. Carl has 1,048 baseball cards. How many more cards does Julie have than Milagro and Carl combined? b) Barry and Tina participated in a reading contest last year. They read a combined total of 12,082 pages. Barry read 5,916 pages. How many pages did Tina read? 	https://www.illustrati vemathematics.org/ill ustrations/1289
MA.4.AT.2:	Recognize and apply the relationships between addition and multiplication, between subtraction and division, and the inverse relationship between multiplication and division to solve real-world and other mathematical problems.	Inverse operation - An operation that undoes another. (<i>Ex: multiplication is the inverse</i> operation of division.)	Jasmine has 7 bags with 6 marbles in each bag. She says that the only way to determine the total number of marbles is to do $6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 $	http://www.ixl.com/m ath/grade- 4/properties-of- division
MA.4.AT.3:	Interpret a multiplication equation as a comparison (e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7, and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations.		Write an equation that describes 4 times as many as 8.	https://learnzillion.co m/lessonsets/539- interpret- multiplication-as-a- comparison
MA.4.AT.4:	Solve real-world problems with whole numbers involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem), distinguishing multiplicative comparison from additive comparison. [In grade 4, division problems should not include a remainder.]		 a) Sam has \$7. Amy has 4 times as much as Sam. How much money does Amy have? b) Teah has \$72 and that is 8 times as much as Ray. How much money does Ray have? c) Madison has \$88 and Tyler has \$22. How many times more does Madison have as compared to Tyler? 	https://www.illustrati vemathematics.org/ill ustrations/263

		Adopted April 2014 – Standards I	nese		
MA.4.AT.5:	Solve real-world problems involving addition and subtraction of fractions referring to the same whole and having common denominators (e.g., by using visual fraction models and equations to represent the problem).			Josie and Sabrina shared a pizza. Josie ate $\frac{3}{6}$ of the pizza and Sabrina ate $\frac{2}{6}$ of the pizza. How much of the pizza did they eat altogether? Kim has $3\frac{3}{8}$ pies left over from a party. After giving some to her dad, she has $1\frac{1}{8}$ pies left. How much pie did Kim give to her dad?	http://www.ixl.com/m ath/grade-4/add-and- subtract-fractions- with-like- denominators-word- problems
MA.4.AT.6:	Understand that an equation, such as y = 3x + 5, is a rule to describe a relationship between two variables and can be used to find a second number when a first number is given. Generate a number pattern that follows a given rule.		a) b)	Erin makes a picture in art class. For every square she uses in her picture, she uses 5 triangles. The equation $T = 5s$ represents this relationship where T represents the number of triangles and s represents the number of squares. How many triangles does Erin use if she uses 9 squares, 10 squares, 11 squares? Use the equation $y = 3x - 2$ to determine the values of y for the given values of x. $\frac{x y}{1 1 2 2 2 2 2 2 2 2 $	http://www.ixl.com/m ath/grade-4/function- tables

		Geome		
MA.4.G.1:	Identify, describe, and draw parallelograms, rhombuses, and trapezoids using appropriate tools (e.g., ruler, straightedge and technology).	Parallelogram- a quadrilateral that has two pairs of parallel sides. Rhombuses- a parallelogram with all four sides of equal length Trapezoid- a quadrilateral with exactly one pair of parallel sides.	Draw a parallelogram, rhombus, and trapezoid and describe how they are similar and different.	http://www.ixl.com/m ath/grade-4/identify- planar-and-solid- figures
MA.4.G.2:	Recognize and draw lines of symmetry in two-dimensional figures. Identify figures that have lines of symmetry.	Symmetry - correspondence in size and shape on either side of a dividing line.	Draw as many lines of symmetry as possible for each of the given figures.	https://www.illustrati vemathematics.org/ill ustrations/676
MA.4.G.3:	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint.	Ray - a part of a line that begins at a point and continues without end in one direction	Circle each picture that represents an angle.	http://www.ixl.com/m ath/grade-4/estimate- angle-measurements

Indiana Department of Education

		Adopted April 2014 – Standards		
MA.4.G.4:	Identify, describe, and draw	Perpendicular lines- lines that	In the picture below, identify all of the pairs of	http://www.ixl.com/m
	rays, angles (right, acute,	intersect at right angles	parallel and perpendicular lines, and all of the	ath/grade-4/acute-
	obtuse), and perpendicular and	Parallel lines- lines that do not	right and acute angles.	right-obtuse-and-
	parallel lines using appropriate tools (e.g., ruler, straightedge and technology). Identify these in two-dimensional figures.	intersect		<u>straight-angles</u>
MA.4.G.5:	Classify triangles and	Triangle- a three-sided polygon	Classify the triangles into 3 groups; triangles with a	http://www.ixl.com/m
	quadrilaterals based on the	Quadrilateral- a four-sided polygon	right angle, triangles with an obtuse angle, and	ath/grade-4/which-2-
	presence or absence of parallel		triangles with only acute angles.	dimensional-shape-is-
	or perpendicular lines, or the			being-described
	presence or absence of angles		٨	
	(right, acute, obtuse).			

		Measurem	ent
MA.4.M.1:	Measure length to the nearest quarter- inch, eighth-inch, and millimeter.		Use a ruler to measure the line segment to the nearest quarter-inch, eighth-inch, and millimeter. <u>————————————————————————————————————</u>
MA.4.M.2:	Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; hr, min, sec. Express measurements in a larger unit in terms of a smaller unit within a single system of measurement. Record measurement equivalents in a two- column table.		Complete the tables to show the relationship between the units.http://www.ixl.com/m ath/grade-4/compare- and-convert- customary-units122345meterscentimeters124512349
MA.4.M.3:	Use the four operations (addition, subtraction, multiplication and division) to solve real-world problems involving distances, intervals of time, volumes, masses of objects, and money. Include addition and subtraction problems involving simple fractions and problems that require expressing measurements given in a larger unit in terms of a smaller unit.	Mass- the amount of matter an object contains. Volume - the amount of 3- dimensional space an object occupies; capacity	Ted played outside for $3\frac{1}{2}$ hours. Kelly played outside for $1\frac{1}{2}$ hours. http://www.ixl.com/m ath/grade-4/price-• How many hours did they play outside altogether?multiplication• How many more minutes did Ted play outside than Kelly?http://www.ixl.com/math/grade-4/add-and- subtract-mixed-time- units

Indiana Department of Education

	Auu	pted April 2014 – Standards F		
MA.4.M.4:	Apply the area and perimeter formulas for rectangles to solve real-world problems and other mathematical problems. Recognize area as additive and find the area of complex shapes composed of rectangles by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts; apply this technique to solve real-world problems and other mathematical problems involving shapes.	Area- the number of square units needed to cover a surface Perimeter- the distance around a closed two- dimensional shape	What is the area and perimeter of the figure below? 22 ft. 7 ft. 16 ft. 12 ft.	http://www.ixl.com/m ath/grade-4/area-of- complex-figures-with- all-right-angles
MA.4.M.5:	Understand that an angle is measured with reference to a circle, with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. Understand an angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure other angles. Understand an angle that turns through n one-degree angles is said to have an angle measure of n degrees.		The diagram below may help students understand that an angle measurement is not related to area since the area between the 2 rays is different for the 3 circles yet the angle measure is the same.	https://learnzillion.co m/lessons?utf8=%E2% 9C%93&filters%5Bsubj ect%5D=math&query= 4.MD.5a

	Adopted April 2014 – Standards Resource Guide Document				
MA.4.M.6:	Measure angles in whole-number degrees		Before students begin measuring angles with	http://www.ixl.com/m	
	using appropriate tools. Sketch angles of		protractors, they need to have some experiences	ath/grade-4/measure-	
	specified measure.		with benchmark angles. They transfer their	angles-with-a-	
			understanding that a 360 ^o rotation about a point	protractor	
			makes a complete circle to recognize and sketch		
			angles that measure approximately 90° and 180°.		
			They extend this understanding and recognize		
			and sketch angles that measure approximately		
			45 ^o and 30 ^o . They use appropriate terminology		
			(acute, right, and obtuse) to describe angles and		
			rays (perpendicular).		
			a) Use a protractor to determine the measure of angle AOB.		
			B		
			0A		

Data Analysis							
MA.4.DA.1:	Formulate questions that can be addressed with data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, and bar graphs.		Activity: Students can formulate a statistical question of interest and conduct an observation, survey, or experiment. They can collect, organize, and display their data, and make observations based on their data display. (Examples: conduct a survey in class about favorite color, food, etc.; observe and tally the different colors of shirts classmates wear to school on a given day.)http://www.ixl.com/ ath/grade-4/make- predictions	<u>′m</u>			
MA.4.DA.2:	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using data displayed in line plots.	Line Plot - data represented with check marks, X's, or other symbols above a number line to show the frequency of each value	 a) Activity: Students can measure the length of their right hand (in a standardized manner) to the nearest quarter-inch. Then, compile the data and make a line plot to display and analyze the data. b) Ten students measured their pencils to the nearest eighth-inch. They recorded their results as shown in the line plot below. X X X X X X X X X X X X X 3 ⁴/₈ 4 4 ²/₈ 5 ¹/₈ 5 ⁵/₈ What is the difference in length between the longest and shortest pencil? If you were to line up all 10 pencils, what would the total length be? 				

MA.4.DA.3:	Interpret data displayed in a	Circle graph, a graph made of a	Jim asked the students in his class to choose their	http://www.ck12.org/
IVIA.4.DA.3:	Interpret data displayed in a circle graph.	Circle graph - a graph made of a circle divided into sectors; also called a pie chart or pie graph	favorite color out of blue, red, and green. He represented this data in a circle graph as shown below.	http://www.ck12.org/ statistics/Interpretatio n-of-Circle- Graphs/lesson/Interpr etation-of-Circle-
			Favorite Color	<u>Graphs-Grade-7/r9/</u>
			Green Red	
			Based on the graph, which statements are true?	
			 About ¹/₄ of the class chose blue as their favorite color. About ¹/₂ of the class chose blue as their 	
			 favorite color. About ¹/₂ of the class chose green or red as their favorite color. 	
			 The color chosen most was blue. Red and green were chosen the same amount. 	