Kindergarten Math

Units of Study	
Math Connect	Daily Skill Practice
Unit 1	Counting to 25 (25 days) Approximately: August 23 to September 27
Unit 2	Decomposition to 5 (20 days) September 28 to October 27
Unit 3	Number Sense to 10 (15 days) October 28 to November 18
Unit 4	Addition within 10 (30 days) November 19 to January 14
Unit 5	Subtraction within 10 (Culmination Addition/Subtraction) (30 days) January 18 to March 2
Unit 6	Teen Numbers (15 days) March 3 to March 30
Unit 7	Numbers 25-100 (25 days) March 31 to May 5
Unit 8	Geometry (10 days) May 6 to May 21
Unit 9	Measurement and Data (5 days) May 22 to May 27

Green: Priority Standards				Pink	uppor	g Stand	rds					
		Units										
Stan dard s			Math Connect	1	2	3	4	5	6	7	8	9
	NS	1	X	X						X		
		2		X								
		3							X			
		4		X		X						
		5		X							X	
		6		X								
		7				X						
		8				X						
		9				X						
		10				X						
		11							X			
	CA	1					X	X				
		2	X				X	X				
		3	X		X		X	X				
		4	X				X					
		5	X								X	
	G	1									X	
		2									X	
		3									X	
		4									X	
	M	1	X									X
		2	X									X
	DA	1	X									X

Math Connect- Daily Skill Practice

General Description of the Unit:

In addition to units of study, we will conduct daily math meetings, in which students spiral the skills in the standards listed here. Below is a brief description of the timeline for these standards based on their placement in Units. Other standards can be included in daily math meetings based on student needs, but should include:

Units 1- 4: K.DA.1, K.M.1, K.M.2, K.CA. 5
Units 5-6: K.DA.1, K.M.1, K.M.2, K.CA.5, K.CA. 3
Units 6- 7: K.DA.1, K.M.1, K.M.2, K.CA.5, K.CA.3, K.CA. 2
Units 8-9: K.DA.1, K.M.1, K.M.2, K.CA.5, K.CA.3, K.CA.2, K.NS. 1 (50-100)

Priority Standards

- K.DA. 1 Identify, sort, and classify objects by size, number, and other attributes. Identify objects that do not belong to a particular group and explain the reasoning used.

Supporting Standards

\square K.CA. 5 Create, extend, and give an appropriate rule for simple repeating and growing patterns with numbers and shapes.

- K.M. 1 Make direct comparisons of the length, capacity, weight, and temperature of objects, and recognize which object is shorter, longer, taller, lighter, heavier, warmer, cooler, or holds more.
- K.M. 2 Understand concepts of time, including: morning, afternoon, evening, today, yesterday, tomorrow, day, week,

month, and year. Understand that clocks and calendars are tools that measure time. K.CA. 3 Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., $5=2+3$ and $5=4+1$). [In Kindergarten, students should see equations and be encouraged to trace them, however, writing equations is not required. K.CA. 2 Solve real-world problems that involve addition and subtraction within 10 (e.g., by using objects or drawings to represent the problem). K.NS. 1 Count to at least 100 by ones and tens and count on by one from any number.	
Resources	
Resources/Activities: IDOE Examples/Tasks K.NS. 1 IDOE Examples/Tasks K.CA. 2 IDOE Examples/Tasks K.CA. 3 IDOE Examples/Tasks K.CA. 5 IDOE Examples/TasksK.M. 1 IDOE Examples/Tasks K.M. 2	Other:

Unit 1-Counting to 25

General Description of the Unit

Students will learn to count to 25 by ones and tens and count on from any given number. Students will begin to write numbers from zero to 20. In addition, they will represent a number with objects. Students will practice one to one correspondence, understanding that the last number stated represents the total of the objects counted.

Priority Standards

\square K.NS. 1 Count to at least 100 by ones and tens and count on by one from any number.
\square K.NS. 2 Write whole numbers from zero to 20 and recognize number words from zero to 10 . Represent a number of objects with a written numeral zero to 20 (with zero representing a count of no objects).

- K.NS. 4 Say the number names in standard order when counting objects, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number describes the objects counted and that the number of objects is the same

Supporting Standards

\square K.NS. 5 Count up to 20 objects arranged in a line, a rectangular array, or a circle. Count up to 10 objects in a scattered configuration. Count out the number of objects, given a number from one to 20 .

- K.NS. 6 Recognize sets of one to 10 objects in patterned arrangements and tell how many without counting.

regardless of their arrangement or were counted.	order in which they		
Proficiency Scales K.NS. 1 K.NS. 2 K.NS. 4		Tiered Assessments	
Enduring Understandings \square Objects and images can be count we say represents the amount of are. - Objects/images have permanenc same number/value no matter h - There is a correct order for coun - Numerals and number words are numbers to represent the amount	, and each number jects/images there and represent the w they are arranged. g. ways we can write value.	Essential Questions \square When do you count things at home? Why is it important to count in order? \square How are 5 legos, the numeral 5, and the word five alike? How are they different? \square How do you figure out how many objects there are? Where do you start? \square How many ways can you show a number? \square How do I find out "how many"?	
Key Concepts I I can count to at least 100 by ones. (K.NS.1) - I can count to at least 100 by tens. (K.NS.1) - I can count on by one from any number. (K.NS.1) - I can write whole numbers from 0 to 20. (K.NS.2)	Related Concepts I I can count up to 20 objects arranged in a line. (K.NS.5) - I can count up to 20 objects arranged in a rectangular array. (K.NS.5) I I can count up to 20 objects arranged in a circle. (K.NS.5) I I can count up to 10 objects that are scattered. (K.NS.5)		Assessment Vocabulary \square Count on \square Pairs \square Arrangement \square Order Array \square Line \square Circle \square Pattern

- I can recognize number words from 0 to 10. (K.NS.2) - I can represent numbers of objects with numbers. (K.NS.2) - I can say the names of numbers in order when counting objects. (K.NS.4) I I can pair objects with one, and only one, number name. (K.NS.4) - I can explain that the last number said while counting is how many objects have been counted. (K.NS.4)	- I can count out a given number of objects up to 20. (K.NS.5) I I can recognize sets of 1-10 objects set in patterns. (K.NS.6) - I can tell how many objects, from 1-10, are in a pattern without counting. (K.NS.6)	
Mathematical Processes \square PS. 1 Make sense of problems and persevere in solving them. - Explain the meaning of a given problem by analyzing explicit evidence. - Monitor and reflect on my progress and change strategy if needed.		
Resources		
Textbook Lesson 1 Understanding Counting Lesson 2 Count 1, 2, \& 3	Digital IDOE Examples/Tasks K.NS. 1 IDOE Examples/Tasks K.NS. 2 IDOE Examples/Tasks K.NS. 4 IDOE Examples/Tasks K.NS. 5	Ten Frames Ten Frame Ten Frame Version 2 Five Frame

Lesson 3 Count 4 Lesson 4 Count 5 Lesson 7 Count 6 \& 7 Lesson 9 Count 8 \& 9 Lesson 11 Count 10 Lesson 22 Count Teen Numbers	IDOE Examples/Tasks K.NS. 6 iReady/Count Up to 3 K.NS. 1 IReady/Rote Count to 10 K.NS. 1 iReady/Subitize to 3 K.NS. 6 IReady/Understand Teen Numbers K.NS. 2 iReady/Making a Set of 10 Objects K.NS. 4 iReady/Counting Backward: 10 to 0 K.NS. 1 iReady/Count up to 5 Objects K.NS. 4 iReady/Identify Numerals to 1 K.NS. 2 iReady/Count Groups of 0-5 Objects K.NS. 4 iReady/Identify Numerals to 5 K.NS. 2 iReady/Identify Numerals to 10 K.NS. 2 iReady/Count Teen Numbers K.NS. 1 IReady/Make a Set of Up to 20 Objects K.NS. 4 iReady/Count Forward by Ones K.NS. 1 iReady/Count by Tens K.NS. 1	Base Ten Blocks Base Ten Blocks Version 2 Interactive 100s Chart Two Color Counters Bear Counters Unifix Cubes Marble Jar

Unit 2- Decomposition to 5

General Description of the Unit Students will learn to decompose numbers (break numbers into two parts to represent a whole) less than or equal to 5 in more than one way. They might do this by using objects, drawings, fingers to show the number decomposed. For example, $5=3+2$ and $5=4+1$.	
Priority Standards - K.CA. 3 Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., $5=2+3$ and $5=4+1$). [In Kindergarten, students should see equations and be encouraged to trace them, however, writing equations is not required.	$\frac{\text { Supporting Standards }}{\square \text { N/A }}$
$\begin{aligned} & \text { Proficiency Scales } \\ & \text { K.CA. } 3 \end{aligned}$	Tiered Assessments
Enduring Understandings \square There is more than one way to break-apart (decompose) a number.	Essential Questions How can you break this number into pairs? - How can we make equal pairs? What equation can we make from drawing?

\square Both sides of an equals sign repre amount.	ent the same	\square What other way can we break-apart the number?
Key Concepts - I can use objects to break numbers less than or equal to 10 into pairs in more than one way. (K.CA.3) - I use drawings to break apart numbers less than or equal to 10 into pairs in more than one way. (K.CA.3) - I can trace, or draw equations. (K.CA.3)	Related Concepts N/A	Assessment Vocabulary \square
Mathematical Processes - PS. 1 Make sense of problems and persevere in solving them. - Build new mathematical knowledge through problem solving. - PS. 2 Reason abstractly and quantitatively. - Make sense of quantities and their relationships in problem situations.		

Resources		
Textbook Lesson 6 Make 3, 4 \& 5 Lesson 8 Make 6 \& 7 Lesson 10 Make 8 \& 9 Lesson 13 Make 10		Five Frame Manipulatives Two Color Counters Bear Counters Unifix Cubes Marble Jar

Unit 3- Number Sense to 10

General Description of the Unit

Students will practice one to one correspondence, understanding that the last number stated represents the total of the objects counted up to 10. Students will begin to understand and identify whether the number of objects in one group is greater than or less than, or equal to the number of objects in another group. They might do this by matching the objects from one group to another, counting, or a different strategy.

Priority Standards

- K.NS. 4 Say the number names in standard order when counting objects, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number describes the objects counted and that the number of objects is the same regardless of their arrangement or the order in which they were counted.
- K.NS. 7 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group (e.g. by using matching and counting strategies).

Supporting Standards

- K.NS. 8 Compare the values of two numbers from 1 to 20 presented as written numerals.
- K.NS. 9 Correctly use the words for comparison, including: one and many; none, some and all; more and less; most and least; and equal to, more than and less than.
- K.NS. 10 Separate sets of 10 or fewer objects into equal groups.

Proficiency Scales

K.NS. 4

K.NS. 7

Enduring Understandings

\square Numbers can be compared using many strategies including: counting, looking at a hundreds chart, lining up sets, and looking at written numbers.
\square There are many ways to describe comparisons, including, but not limited to: greater than, less than, equal, one more, one less, some, all, most, least, equal, etc.

- If numbers or amounts are the same, they are called equal.

Essential Questions

Which number is greater than, less than, equal to, etc.?
. What makes the number equal?
Which strategy should we use to compare numbers?
\square Why is it important to be able to compare numbers? When might you compare numbers at home?
\square Is it "fair" if you get 5 crackers for a snack and someone else in our class gets 8 ? Why or why not? How do you know?

Key Concepts

- I can say the names of numbers in order when counting objects. (K.NS.4)
- I can pair objects with one, and only one, number name. (K.NS.4)
- I can explain that the last number said while counting is how many objects have been counted. (K.NS.4)
- I can identify that one group of objects is greater than another group. (K.NS.7)
- I can identify that one group of objects is less than another group. (K.NS.7)
- I can identify that one group of objects is equal to another group. (K.NS.7)

Related Concepts

- I can compare two numbers from 1 to 20. (K.NS.8)
- I can compare things using the words: one and many. (K.NS.9)
- I can compare things using the words: none, some, and all. (K.NS.9)
- I can compare things using the words: more and less. (K.NS.9)
- I can compare things using the words: most and least. (K.NS.9)
- I can compare things using the words: equal to, more than, and less than. (K.NS.9)
- I can create equal groups with 10 or less objects. (K.NS.10)

Assessment Vocabulary

- Pairs
- Arrangement
\square Order
- Greater than
- Less than
- Equal

Compare

- One
- Many

J None

- Some
- All
- More
- Less
- Most
] Least

\square I can use matching and counting strategies to compare groups of objects. (K.NS.7)		
Mathematical Processes - PS. 4 Model with mathematics. - Apply mathematics to solve problems in everyday life. - PS. 1 Make sense of problems and persevere in solving them. - Evaluate whether my solution makes sense in the context of a problem.		
Resources		
Textbook Lesson 5 Compare Within 5 Lesson 12 Compare Within 10	Digital	Manipulatives
	IDOE Examples/Tasks K.NS. 4	Ten Frames
	IDOE Examples/Tasks K.NS. 7	Ten Frame
	IDOE Examples/Tasks K.NS. 8	Ten Frame Version 2
	IDOE Examples/Tasks K.NS. 9	Five Frame
	IDOE Examples/Tasks K.NS. 10 iReady/Count Groups of 0-5 Objects K.NS. 4	Base Ten Blocks Base Ten Blocks Version 2

	iReady/Count up to 5 Objects K.NS. 4 iReady/Making a Set of 10 Objects K.NS. 4 IReady/Make a Set of Up to 20 Objects K.NS. 4 iReady/One More K.NS. 7 iReady/One Less K.NS. 7 iReady/Compare Within 5 K.NS. 7 iReady/Compare Within 10 K.NS. 7	Interactive 100s Chart Two Color Counters Bear Counters Unifix Cubes Marble Jar Number Line Pan Balance Math Balance

Unit 4- Addition within 10

General Description of the Unit

Students will solve real-world problems involving addition within 10. Students will learn to decompose numbers (break numbers into two parts to represent a whole) less than or equal to in 10 more than one way. They might do this by using objects, drawings, fingers to show the number decomposed. For example, $10=3+7$ and $10=5+5$. Students will make 10 by finding the number that makes 10 when adding. They will show their work in a drawing or using objects; they will record their answer in a drawing or equation.
\square K.CA. 2 Solve real-world problems that involve addition and subtraction within 10 (e.g., by using objects or drawings to represent the problem).
\square K.CA. 3 Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., $5=2+3$ and $5=4+1$). [In Kindergarten, students should see equations and be encouraged to trace them, however, writing equations is not required.]
K.CA. 4 Find the number that makes 10 when added to the given number for any number from one to nine (e.g., by using objects or drawings), and record the answer with a drawing or an equation.
\square K.CA. 1 Use objects, drawings, mental images, sounds, etc., to represent addition and subtraction within 10.

Proficiency Scales	Tiered Assessments
K.CA. 2 年	
K.CA. 3	
K.CA. 4	
Enduring Understandings	Essential Questions
- When two or more sets of numbers, objects, pictures, etc. are joined together we are representing addition.	- How would you explain addition to someone? \square Can you make up a story where we would have to add to solve it?

There are many strategies for adding numbers, including: counting, counting on, drawing a picture, using objects, using a ten frame, number lines, hundreds charts, etc. \quadanother way to solve it?		
Key Concepts	Related Concepts \quad Assessment Vocabulary	
\square I can solve real-world problems that involve addition within 10 using objects or drawings. (K.CA.2) \square I can solve real-world problems that involve subtraction within 10 using objects or drawings. (K.CA.2) \square I can use objects to break numbers less than or equal to 10 into pairs in more than one way. (K.CA.3) \square I use drawings to break apart numbers less than or equal to 10 into pairs in more than one way. (K.CA.3) \square I can trace, or draw equations. (K.CA.3) \square Given any number 1 to 9 , I can find the correct number to add to make 10. (K.CA.4)	\square I can represent addition and subtraction using objects within 10. (K.CA.1) \square I can represent addition and subtractions using drawings within 10. (K.CA.1) \square I can use mental images to represent addition and subtraction within 10. (K.CA.1) \square I can use sounds to represent addition and subtraction within 10. (K.CA.1)	Addition Subtraction Plus Equal Minus Add Subtract Decompose Equation Number bond

	Digital	Manipulatives
Lesson 14 Understanding Addition Lesson 15 Add Within 5 Lesson 18 Add Within 10	IDOE Examples/Tasks K.CA. 1 IDOE Examples/Tasks K.CA. 2 IDOE Examples/Tasks K.CA. 3 IDOE Examples/Tasks K.CA. 4 iReady/One More K.CA. 2 iReady/One Less K.CA. 2 iReady/Make Numbers to 5 K.CA. 3 iReady/Add Within 5 K.CA. 3 iReady/Make 6, 7, 8 and 9 K.CA. 3 iReady/Sums of 10 K.CA. 3 iReady/Subtract Within 5 K.CA. 2	Ten Frames Ten Frame Ten Frame Version 2 Two Color Counters Bear Counters Unifix Cubes Marble Jar Number Line

Unit 5-Subtraction within 10 (Culmination Addition/Subtraction)

General Description of the Unit

Students will solve real-world problems involving subtraction within 10. Students will learn to decompose numbers (break numbers into two parts to represent a whole) less than or equal to in 10 more than one way. They might do this by using objects, drawings, fingers to show the number decomposed. For example, 10-7=3 and $10-5=5$.

Priority Standards

K.CA. 2 Solve real-world problems that involve addition and subtraction within 10 (e.g., by using objects or drawings to represent the problem).

- K.CA. 3 Use objects, drawings, etc., to decompose numbers less than or equal to 10 into pairs in more than one way, and record each decomposition with a drawing or an equation (e.g., $5=2+3$ and $5=4+1$). [In Kindergarten, students should see equations and be encouraged to trace them, however, writing equations is not required.]

Supporting Standards

- K.CA. 1 Use objects, drawings, mental images, sounds, etc., to represent addition and subtraction within 10 .

K.CA. 3			
Enduring Understandings \square Subtraction represents situations happening (i.e. take away) and a n smaller. \square There are many strategies for sub including: counting, counting back using objects, using a ten frame, n hundreds charts, etc. - We represent subtraction with a " \square Subtraction equations have "minu signs" and we can write equations \square Addition and subtraction represen situations.	where something is mber is getting racting numbers, drawing a picture, mber lines, minus sign". signs" and "equal in different ways. different real-world	\square Should we use addition or subtraction to solve this problem? How do you know? - Can you make up a story that we would have to add to solve? - Can you make up a story that we would have to subtract to solve? \square How are addition and subtraction like each other? How are they different?	
Key Concepts - I can solve real-world problems that involve addition within 10 using objects or drawings. (K.CA.2) - I can solve real-world problems that involve subtraction within 10 using objects or drawings. (K.CA.2) \square I can use objects to break numbers less than or equal to 10 into pairs in more than one way. (K.CA.3) - I use drawings to break apart numbers less than or equal to 10 into pairs in more than one way. (K.CA.3)	Related Concepts I I can represent subtraction usi (K.CA.1) - I can represent subtractions us 10. (K.CA.1) - I can use ment addition and su (K.CA.1) - I can use sound and subtractio	addition and g objects within 10. addition and ng drawings within images to represent traction within 10. to represent addition within 10. (K.CA.1)	

- I can trace, or draw equations. (K.CA.3)		
Mathematical Processes - PS. 2 Reason abstractly and quantitatively. o Determine the meaning of symbols, key terms, and other mathematical words or phrases and how they contribute to the solution pathway. - PS. 3 Construct convincing arguments and critique the reasoning of others. o Justify my reasoning for my solution making sense.		
Resources		
Textbook Lesson 16 Understand Subtraction Lesson 17 Subtract Within 5 Lesson 19 Subtract Within 10 Lesson 20 Practice Facts to 5	Digital IDOE Examples/Tasks K.CA. 1 IDOE Examples/Tasks K.CA. 2 IDOE Examples/Tasks K.CA. 3 iReady/One Less K.CA. 3 iReady/Subtraction Number Sentences K.CA. 3	Manipulatives Ten Frames Ten Frame Ten Frame Version 2 Two Color Counters Bear Counters Unifix Cubes

	iReady/Add and Subtract One and Two K.CA.3	Marble Jar Number Line

Unit 6- Teen Numbers

General Description of the Unit

Students will begin to understand place value and the base 10 number system. They will begin to show teen numbers as a group of ten and ones using objects and drawings.(Using straws as base 10, will bundle when reaching ten and continue on.)

Priority Standards	Supporting Standards
- K.NS. 11 Develop initial understandings of place value and the base 10 number system by showing equivalent forms of whole numbers from 10 to 20 as groups of tens and ones using objects and drawings.	- K.NS. 3 Find the number that is one more than or one less than any whole number up to 20 .
Proficiency Scales	Tiered Assessments
K.NS. 11	
Enduring Understandings	Essential Questions
- Teen numbers are composed of one ten and some ones. \square Teen numbers are two-digit numbers that start with a 1 , and the 1 represents one ten.	. How are the numbers 4 and 14 alike? How are they different?

- Teen numbers can be represented with numerals, objects, ten frames, on the hundreds chart, with base ten blocks, etc. - When we count to a number, the number before it is one less and the number that comes after is one more. \square You can use counting, objects, pictures, hundreds charts, etc. to find one more and one less. - Finding one more and one less is like adding one or subtracting one.		\square What does the numbe \square How would someone? \square How can you at on a hun base ten bl \square Where do y Our school? \square How can you you find on	1 mean in the number 15? What does mean? ex explain the numbers 10 and 20 to represent 18 with ten frames? Where is it eds chart? What does it look like with ks? etc. see teen numbers in our classroom? Your home? Your neighborhood? find one more than a number? How can ess? Can you do it in a different way?
Key Concepts I I can create groups of tens and ones using objects to represent numbers from 10-20. (K.NS.11) - I can create groups of tens and ones using drawings to represent numbers from 10-20. (K.NS.11)	Related Concepts - I can find one more than any number up to 20. (K.NS.3) - I can find one less than any number up to 20. (K.NS.3)		
Mathematical Processes - PS. 7 Look for and make use of structure.			

- Use what I already kn - PS. 8 Look for and express regularity in - Apply previously used strateg	w about math to solve new problems. epeated reasoning. s to solve new problems.	
Resources		
Textbook Lesson 21 Understand Teen Numbers Lesson 23 Make Teen Numbers	Digital IDOE Examples/Tasks K.NS. 3 IDOE Examples/Tasks K.NS. 11 iReady/Counting up to 20 Objects K.NS. 3	Manipulatives Ten Frames Ten Frame Ten Frame Version 2 Five Frame Base Ten Blocks Base Ten Blocks Version 2 Interactive 100s Chart Two Color Counters Bear Counters Unifix Cubes Marble Jar

Unit 7- Numbers 25-100

General Description of the Unit

Students will continue counting up to 100 . They will be able to switch the method of counting in reaching 100 . Students will be able to count by 1 s and 10 s . Students will also know the numbers that will come next if given any digits 0 to $100 \ldots$ (they will know that 17 etc... comes after 16 by practicing counting daily.)

Priority Standards	
\squareK.NS. 1 Count to at least 100 by ones and tens and count on by one from any number.	Supporting Standards \square N/A

		What patterns do you see on the hundreds chart? How do those help you count? When might you have 85 of something? Where do you see the number 28 ?
Key Concepts - I can count to at least 100 by ones. (K.NS.1) - I can count to at least 100 by tens. (K.NS.1) I. I can count on by one from any number. (K.NS.1)	Related Concepts - N/A	Assessment Vocabulary \square Count on
Mathematical Processes - PS. 6 Attend to precision. - Communicate precisely to others. - PS. 7 Look for and make use of structure. - Listen for patterns in the words used during instruction.		

Resources		
Textbook Lesson 24 Count to 100 by 10 s $\underline{\text { Lesson } 25 \text { Count to } 100 \text { by Ones }}$	Digital $\underline{\text { IDOE Examples/Tasks K.NS. } 1}$ iReady/Count Forward by 1s K.NS. 1	Ten Frames \quad Manipulatives Ten Frame Ten Frame Version 2 Five Frame Base Ten Blocks Base Ten Blocks Version 2 Interactive 100s Chart Two Color Counters Bear Counters Unifix Cubes Marble Jar

Unit 8- Geometry

General Description of the Unit

Students will be able to group objects by shapes when comparing their special attributes, taking into consideration the amount of corners and or lines it may or may not have. (A triangle has 3 lines and 3 corners.)

Priority Standards

- K.G. 2 Compare two- and three-dimensional shapes in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length).

Supporting Standards

K.NS. 5 Count up to 20 objects arranged in a line, a rectangular array, or a circle. Count up to 10 objects in a scattered configuration. Count out the number of objects, given a number from one to 20 .
. K.CA. 5 Create, extend, and give an appropriate rule for simple repeating and growing patterns with numbers and shapes.

- K.G. 1 Describe the positions of objects and geometric shapes in space using the terms inside, outside, between, above, below, near, far, under, over, up, down, behind, in front of, next to, to the left of and to the right of.
- K.G. 3 Model shapes in the world by composing shapes from objects (e.g., sticks and clay balls) and drawing shapes.

		- K.G. 4 Compose simple geometric shapes to form larger shapes (e.g., create a rectangle composed of two triangles).	
Proficiency Scales K.G. 2		Tiered Assessments	
Enduring Understandings \square Objects/shapes can be described looking at their characteristics/a - Patterns exist with numbers and at patterns to figure out how to d and what might come next. - We can make shapes with differe combine shapes to make new sha	nd compared by ibutes. apes. We can look cribe the pattern objects and we can es.	Essential Questions \square If someone couldn't see this shape, what are all the ways you could describe it to help them picture it or draw it? \square How are these shapes alike? How are they different? \square Where do you see shapes in our classroom? In our school? Your home? Your neighborhood? The store? - Can you make a pattern? How do you know it's a pattern? What would come next?	
Key Concepts - I can compare two-dimensional shapes. (K.G.2) - I can compare three-dimensional shapes. (K.G.2) - I can describe similarities between two-dimensional shapes. (K.G.2) \square I can describe differences between two-dimensional shapes. (K.G.2)	Related Concepts I I can count up in a line. (K.N - I can count up in a rectangu - I can count up in a circle. (K - I can count up scattered. (K.	20 objects arranged 20 objects arranged array. (K.NS.5) 20 objects arranged 5) 10 objects that are 5)	Assessment Vocabulary Array \square Line \square Circle \square Pattern \square Create \square Extend Outside Oetween B Above

	Digital	Manipulatives
Lesson 29 See Position and Shape	IDOE Examples/Tasks K.NS. 5	Bear Counters
Lesson 30 Name Shapes	IDOE Examples/Tasks K.CA. 5	Pattern Blocks
Lesson 31 Compare Shapes	IDOE Examples/Tasks K.G. 1	Pattern Blocks Version 2
Lesson 32A Build Shapes	IDOE Examples/Tasks K.G. 2	Geoboards
Lesson 32 B Create Patterns	IDOE Examples/Tasks K.G. 3	Tangrams
	IDOE Examples/Tasks K.G. 4	Shape Counters
	iReady/Shape \& Position of Objects K.G. 1	Geometric Solids
	iReady/Plane Shapes \& Solid Shapes K.G. 2	Interactive Prisms
	iReady/Making Shapes K.G. 3	Interactive Triangular/Rectangular Pyramids
		Interactive Cylinder
		Interactive Cone
		Interactive Spheres

Unit 9- Measurement and Data

General Description of the Unit

Students will compare objects by how long or short, how heavy or light, and or the temperature that each object possesses.
Will introduce awareness of time as it relates to the time of the day, day of the week and months of the year. Students will know that clocks are tools in measuring time as it relates to their daily schedule. (11:00 a.m. is our lunch time.) Place objects in special groups as it relates to each other in different ways. (A pencil is shorter than a ruler by comparing it side by side, measuring, etc...)

Priority Standards

- K.M. 1 Make direct comparisons of the length, capacity, weight, and temperature of objects, and recognize which object is shorter, longer, taller, lighter, heavier, warmer, cooler, or holds more.
- K.M. 2 Understand concepts of time, including: morning, afternoon, evening, today, yesterday, tomorrow, day, week, month, and year. Understand that clocks and calendars are tools that measure time.
\square K.DA. 1 Identify, sort, and classify objects by size, number, and other attributes. Identify objects that do not belong to a particular group and explain the reasoning used.

Supporting Standards

\square N/A

Proficiency Scales K.M. 1 K.M. 2 K.DA. 1		Tiered Assessments
Enduring Understandings - Time can be described with gener morning, afternoon, night, etc. as tomorrow, yesterday, etc. - Clocks and calendars represent ti \square Objects can be compared in a var in comparison of their length, how how much they weigh, and how h	lizations like ell as today, e. ty of ways, including much they can hold, t or cold they are.	Essential Questions \square What are all the ways you could compare a school bus and a car? \square How is a hot dog like a hamburger? How is it different? \square What things do you do during the morning? The afternoon? The night? \square How are Wednesday and Saturday alike? How are they different? \square How are February and August alike? How are they different? - Why is time important?
Key Concepts I I can compare the length of objects. (K.M.1) - I can compare the capacity of objects. (K.M.1) - I can compare the weight of objects. (K.M.1) - I can compare the temperature of objects. (K.M.1) - I can recognize which object is shorter, longer, taller, lighter,	$\frac{\text { Related Concepts }}{\square \text { N/A }}$	Assessment Vocabulary - Weight - Temperature - Length - Volume - Compare - Morning - Afternoon - Evening - Yesterday - Tomorrow

$\left.\begin{array}{|l|l|l|}\hline \text { heavier, warmer, cooler, and holds } \\ \text { more. (K.M.1) } \\ \text { I can show that a clock is used to } \\ \text { tell time. (K.M.2) } \\ \text { I can show that a calendar is used to } \\ \text { tell time. (K.M.2) } \\ \text { I can understand the meaning of } \\ \text { morning, afternoon, evening, today, } \\ \text { yesterday, and tomorrow. (K.M.2) } \\ \text { I can understand the meaning of } \\ \text { day, month, and year. (K.M.2) } \\ \text { I can identify objects by size, } \\ \text { number, and other characteristics. } \\ \text { (K.DA.1) }\end{array}\right)$

- PS. 5 Use tools appropriately.
- Consider a variety of tools necessary to solve a specific math problem.
- PS. 6 Attend to precision.
o Identify and use symbols and vocabulary appropriately.

Resources		
Textbook Lesson 26 Compare Length Lesson 27 Compare Weight Lesson 28 Sort Objects		Unifix CubesManipulatives Interactive Calendar Interactive Calendar Plate w/ Weather Color Bar Graphs Thermometer Math Balance Analog Clock

