Englewood Public School District Science Grade 8 First Marking Period

Unit 1: Structure and Properties of Matter

Overview: Students build understandings of what occurs at the atomic and molecular scale. Students apply their understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They also provide a molecular level accounts to explain states of matter and changes between states. The crosscutting concepts of *cause and effect, scale, proportion and quantity, structure and function, interdependence of science, engineering, and technology,* and *the influence of science, engineering and technology on society and the natural world* provide a framework for understanding the disciplinary core ideas. Students demonstrate grade appropriate proficiency in *developing and using models,* and *obtaining, evaluating, and communicating information.* Students are also expected to use the scientific and engineering practices to demonstrate understanding of the core ideas.

Time Frame: 15 to 20 Days

Enduring Understandings:

Substances are made from different types of atoms that can combine in various ways. Each pure substance has characteristic physical and chemical properties that can be used to identify it.

Essential Questions:

How is it that everything is made of stardust? What is the universe made of? Is it possible to tell if two substances mixed or if they reacted with each other?

Standards	Topics and Objectives	Activities	Resources	Assessments
(<u>MS-PS1-1</u>) Develop models to describe	Topics	Students will complete the text activities:	Text: Prentice Hall Science	Formative Assessments: • Journals
the atomic composition of simple molecules and	Describing Matter	1. Discover Activity (p6) What is a Mixture?	Explorer: Chemical Building Blocks	• Learning/Response
extended structures.	Changes in Matter	2. Interpreting Data Activity (p8) Melting/Boiling point	Materials:	LogsDiscussions
	Twenty-First CenturyThemes and Skills include:The Four C's	3. Discover Activity (p22) Is a New Substance Formed?	 For Discover Activity (p6) What is a Mixture? Small objects: checkers, 	Summative Assessments: Unit quizzes and test
(<u>MS-PS1-2</u>)	 Life and Career Skills Information and Media literacy 	Students will explore the interactive tutorial <u>Particulate</u> <u>Nature of Matter.</u>	marbles papers clips of different sizes and colors For Discover Activity (p22) Is	Student will use models to differentiate between

yze and interpret data		(CRP4, 8.2.8.A.2, 6.1.8.C.4b)	a New Substance Forn
ne properties of	Objectives		Chalk
tances before and after		Students will complete the Lab:	• Sheet of paper
ubstances interact to	Students will:	Identifying Elements,	Metal spoon
rmine if a chemical		Compounds, and Mixtures.	 Vinegar
tion has occurred.	Develop a model of a simple		Dropper
	molecule and describe its	Students will watch a	• Dropper
	atomic composition.	demonstration of chemical	Websites:
		changes and complete the	Particulate Nature
	Analyze and interpret data to	Chemical Change Un-Notes	Matter
	determine similarities and	page to introduce the concept of	<u>iviation</u>
	differences from results of	chemical change and discuss	Videos:
	chemical reactions between	with peers.	<u>Chemical Change</u>
	substances before and after	(MS-PS1-2, 8.EE.A.3, CRP8,	<u>Elephant Toothpas</u>
	they undergo a chemical	9.2.8.B.3, RST.6-8.1)	 Elephant Toothpas Elephant Toothpas
	process.		• <u>Elephant Toothpas</u>
		Students will the complete the	Enrichment Lesson P
		<u>Chemical vs. Physical Group</u> Challenge.	See Molecular Models
		(MS-PS1-1, MP.4)	Physical or Chemical (
		(MIS-FS1-1, MIF.4)	Virtual lab
		Students will complete the	viituui luo
		Physical and Chemical Change	
		Station Lab.	Additional Resources
		(CRP4, 8.2.8.A.2)	http://www.learningsci
		(0111 1, 012101112)	g/psc3bstrucpropmatte
		Students will view the Chemical	~
		Change Song, Elephant	http://www.thescience
		Toothpaste 1, Elephant	/uploads/1/0/7/2/10722
		Toothpaste 2 videos.	ucture_of_matter_read
		-	<u>pdf</u>
		Enrichment Activity:	
		Students will complete the	Book:
		virtual labs Molecular Models	The Structure And Pro
		and Physical or Chemical	Of Matter, by Herman
		Change?	Briscoe
		(RST.6-8.7)	

Analy

on the

subst

the su

deter

reacti

rmed?)

- e of
- e Song
- aste 1
- aste 2

Plans:

s and Change?

es: science.or ter.htm

ezone.org 22737/str ding 4th.

operties n T.

different types of matter in the Lab: Identifying Elements, Compounds, and Mixtures. Projects, Drawings, Charts, Graphs, Journals

Students will provide evidence that a physical or chemical change has occurred during the Physical and Chemical Change Station Lab. Observation, Simulations

Students will develop a model of a simple molecule. Project, Drawing, Response Log/Journal

Benchmark Assessments:

- Exact Path •
- Common Formative • Assessment

Alternative Assessments:

Student understanding will be gauged based on responses to Chemical vs. Physical Group Challenge. Peer Assessment

Student will analyze and interpret data to determine similarities and differences from results of chemical reactions between substances before and after they undergo a chemical process. Graphic Organizers, Rubric

Accommodations and Modifications:

Students with special needs: Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all instructional leaders. Physical expectations and modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered.

ELL/ESL students: Students will be supported according to the recommendations for "can do's" as outlined by WIDA – <u>https://www.wida.us/standards/CAN_DOs/</u>

This particular unit has limited language barriers due to the physical nature of the curriculum.

Students at risk of school failure: Formative and summative data will be used to monitor student success at first signs of failure student work will be Reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations. More time and will be made available with a certified instructor to aid students in reaching the standards.

Gifted and Talented Students: Students excelling in mastery of standards will be challenged with complex, high level challenges related to the complexity In planning and carrying out investigations and analyzing and interpreting data.

English Language Learners	Special Education	At-Risk	Gifted and Talented
 Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community. Speak and display terminology Teacher modeling Peer modeling Provide ELL students with multiple literacy strategies. Word walls Use peer readers Give page numbers to help the students find 	 Utilize modifications & accommodations delineated in the student's IEP Work with paraprofessional Use multi-sensory teaching approaches. Work with a partner Provide concrete examples Restructure lesson using UDL principals (http://www.cast.org/our -work/about-udl.html#.VXmoXcfD_UA). Provide students with multiple choices for how 	 Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community. Using visual demonstrations, illustrations, and models Give directions/instructions verbally and in simple written format. Oral prompts can be given. Peer Support Increase one on one time Teachers may modify instructions by modeling what the student is expected to do Instructions may be printed 	 Inquiry-based instruction Independent study Higher order thinking skills Adjusting the pace of lessons Interest based content Real world scenarios Student Driven Instruction Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understand -ings. Use project-based science learning to connect science with observable phenomena. Structure the learning around explaining or solving a social or

Interdisciplinary Connections:

ELA-NJSLS/ELA:

RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. (MS-PS1-2)

RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-1),(MS-PS1-2)

Mathematics:

8.EE.A.3: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1)

Career Ready Practices:

CRP4: Communicate clearly and effectively and with reason.

CRP8: Utilize critical thinking to make sense of problems and persevere in solving them.

Integration of Technology Standards NJSLS 8:

8.2.8.A.2: Examine a system, consider how each part relates to other parts, and discuss a part to redesign to improve the system.

Integration of 21st Century Standards NJSLS 9: 9.2.8.B.3

Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.

Social Studies:

6.1.8.C.4.b: Explain how major technological developments revolutionized land and water transportation, as well as the economy, in New Jersey and the nation.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
Developing and Using Models	PS1.A: Structure and Properties of Matter	Scale, Proportion, and Quantity	
 Develop a model to predict and/or describe phenomena. (MS-PS1-1) Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. (MS-PS1-2) 	 Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1) Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1) Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2) 	 Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1) Patterns Macroscopic patterns are related to the nature of microscopic and atomic-level structure. (MS-PS1-2) <i>Connections to Nature of Science</i> Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS1-2) 	

Englewood Public School District Science Grade 8 First Marking Period

Unit 2: Interactions of Matter

Overview: Students build understandings of what occurs at the atomic and molecular scale. Students apply their understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They also provide a molecular level accounts to explain states of matter and changes between states. The crosscutting concepts of *cause and effect, scale, proportion and quantity, structure and function, interdependence of science, engineering, and technology,* and *the influence of science, engineering and technology on society and the natural world* provide a framework for understanding the disciplinary core ideas. Students demonstrate grade appropriate proficiency in *developing and using models,* and *obtaining, evaluating, and communicating information.* Students are also expected to use the scientific and engineering practices to demonstrate understanding of the core ideas.

Time Frame: 20 to 25 Days

Enduring Understandings:

Changes in particle motion, temperature, and state of a pure substance occur when thermal energy is added or removed. In a chemical process, the atoms that make up the original substances are regrouped into different molecules.

Essential Questions:

How can we trace synthetic materials back to natural ingredients? How can you tell what the molecules are doing in a substance?

Standards	Topics and Objectives	Activities	Resources	Assessments
(<u>MS-PS1-3</u>) Gather and make sense of information to describe that synthetic materials come from natural resources and	Topics States of Matter Changes in States of Matter	 Students will complete the text activities: 1. Discover Activity (p42) What are Solids, Liquids and Gases? 	Text: Prentice Hall Science Explorer: Chemical Building Blocks	Formative Assessments: Journals Learning/Response Logs Discussions
impact society.	Polymers Twenty-First Century Themes	 Lab Activity (p46) As Thick as Honey (Viscosity) Lab Activity (p50) Keeping It Cool 	Materials: For Discover Activity (p42) What are Solids, Liquids and Gases?	 Discussions Summative Assessments: Unit quizzes and test
(<u>MS-PS1-4</u>)	 and Skills include: The Four C's Life and Career Skills Information and Media 	4. Lab (p54) Melting Ice5. Discover Activity (p55) How Can Air Keep Chalk from Breaking?	• Fizzing antacid tablet, large balloon, soda bottle, water	Students learning needs will be gauged based on responses to <i>Lab Activity (p46) As Thick</i>

Develop a model that		
predicts and describes		
changes in particle motion,		
temperature, and state of a		
pure substance when		
thermal energy is added or		
removed.		

literacy

Objectives

Students will:

Predict changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed in natural or designed systems.

Obtain, evaluate, and communicate information to show that synthetic materials come from natural resources and affect society.

6. Lab (p66) It's a Gas7. Discover Activity (p118) What Did You Make?

Students will complete the <u>Oobleck Lab</u> to compare properties of different states of matter and explore polymers. (9.2.8.B.3, 6.1.8.C.4.b, WHST.6-8.8)

Students will use <u>States of</u> <u>Matter:, Molecular View of a</u> <u>Gas:, Molecular View of a</u> <u>Liquid:</u>, and, <u>Molecular View</u> <u>of a Solid:</u> interactive computer models to trace an atom's trajectory at a certain physical stage, and investigate how molecular behavior is responsible for the substance's state. (MS-PS1-3, 8.2.8.C.5, RST.6-8.7, RST.6-8.1)

Students will view the <u>States of</u> <u>Matter Rap.</u>

Enrichment Activity:

Students will complete the Lab (p126) Design and Build a Polymer Package. (MS-PS1-4, CRP6, 8.2.8.C.5, 8.2.8.C.4) For Lab Activity (p46) As Thick as Honey (Viscosity)

- Three clear jars with lids
- Honey
- Vegetable oil
- A third thick liquid
- Paper towels

For Lab Activity (p50) Keeping It Cool

- 2 alcohol thermometers
- 2 pieces of gauze
- Paper towels
- Aluminum foil
- 2 medicine droppers
- Water
- Nail polish remover

For Lab (p54) Melting Ice

- Timer
- Thermometer
- 2 plastic cups
- 2 plastic stirring rods
- Ice cube
- Warm water
- Water at room temperature

For Discover Activity (p55) How Can Air Keep Chalk from Breaking?

- 3 pieces of chalk
- Sheet of waxed paper or plastic bubble wrap
- Tape

For Lab (p66) It's a Gas

- Strong plastic syringe without the needle
- Modeling clay
- 4 books of uniform weight.

as Honey (Viscosity) and *Lab Activity (p50) Keeping It Cool.* Discussion, Journals, Think Pair Share

Students will receive a grade for analysis questions for the following labs: *Lab* (*p54*) *Melting Ice, and Lab* (*p66*) *It's a Gas.* Questioning, Rubric, Self-Assessment

Students will demonstrate understanding of properties of states of matter, changes in state, and polymers by completing the <u>Oobleck Lab.</u> Written Responses, Discussion, Questioning, Observing

Student responses to <u>States of</u> <u>Matter:</u>, <u>Molecular View of a</u> <u>Gas:</u>, <u>Molecular View of a</u> <u>Liquid:</u>, and <u>Molecular View</u> <u>of a Solid:</u> interactive computer models show understanding of how thermal energy changes particle motion. Models/Projects, Journal Assignments, Review

Benchmark Assessment:

See Unit 1 for quarterly assessment

Alternative Assessments:

Students will use positive and negative numbers to represent changes in particle motion

For Discover Activity (p118) What Did You Make?

- White school glue
- Saturated solution of borax and water
- Paper cups
- Stirrers
- Large spoons

For Oobleck Lab

- Borax solution [15 ml Borax dissolved in 250 ml of warm water]
- Elmer's glue mixture [30 ml of glue mixed with 30 ml water]
- Zipper-lock plastic bag (small)
- 2 bowls
- Measuring spoons and cup
- Green food coloring

Websites:

- <u>States of Matter:</u>
- Molecular View of a Gas:
- <u>Molecular View of a</u> <u>Liquid:</u>
- <u>Molecular View of a</u> <u>Solid:</u>

Videos:

• <u>States of Matter Rap</u>

Enrichment Materials:

For Lab (p126) Design and Build a Polymer Package

- Water
- Hand lens
- Weights or books
- Scissors

and temperature when thermal energy is added or removed.

Multiple Choice, Checklists

Students will gather relevant information from multiple print and digital sources about the impact on society of synthetic materials that are formed from natural resources.

Research, Computers, Rubric, Observations

Students will describe how information about how synthetic materials formed from natural resources affect society is supported or not supported by evidence. Writing, Reflection Journals, Discussion/Responses

Students will develop a model that predicts and describes changes in particle motion that could include molecules or inert atoms or pure substances. Projects, Checklists, Rubrics, Peer Reviews

	Packaging tape
	• Thermometer
	• Balance
	Hot plate
	• Timer
	• Containers (20 beakers,
	trays, or plastic cups)
	• Iodine solution, 1%
	(10mL)
	Cookies or hardboiled
	eggs
	Polymers used in
	packaging (paper, Tyvek,
	plastic foam, ecofoam,
	cardboard, fabric, popcorn,
	sawdust, wood shavings,
	plastic)

Accommodations and Modifications:

Students with special needs: Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all

instructional leaders. Physical expectations and modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered.

ELL/ESL students: Students will be supported according to the recommendations for "can do's" as outlined by WIDA – <u>https://www.wida.us/standards/CAN_DOs/</u>

This particular unit has limited language barriers due to the physical nature of the curriculum.

Students at risk of school failure: Formative and summative data will be used to monitor student success at first signs of failure student work will be Reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations. More time and will be made available with a certified instructor to aid students in reaching the standards.

Gifted and Talented Students: Students excelling in mastery of standards will be challenged with complex, high level challenges related to the complexity In planning and carrying out investigations and analyzing and interpreting data.

 Use peer readers Use peer readers Utilize modifications & accommodations delineated in the student's IEP Perrovide ELL students with multiple literacy strategies. Work with paraprofessional Use multi-sensory teaching approaches. Work with a partner Provide two sets of textbooks, one for home and one for school Provide students with multiple choices for how the complete a task Use graphic organizers Use graphic organizers Use graphic organizers Provide size graphs, charts, data tables, multimedia, modeling). Provide students interest their understandings (e.g. multisensory techniques, graphs, charts, data tables, multimedia, modeling). Provide students with multiple to compare their understandings (e.g. multisensory techniques, graphs, charts, data tables, multimedia, modeling). Provide students with multiple to company the student is for personal space or other behaviors as needed. Structure lessons around questions via digital too lauch as SKYPE, expensions via digital too lauch as SKYPE,
helping with a project,

		journal articles, and biographies).	
Interdisciplinary Connec	ctions:		
ELA-NJSLS/ELA:			
RST.6-8.1: Cite specific or descriptions. (MS-PS1-		nalysis of science and technical texts, atten	nding to the precise details of explanations
visually (e.g., in a flowcha WHST.6-8.8: Gather rele	rt, diagram, model, graph, or evant information from multip nd quote or paraphrase the da	tion expressed in words in a text with a ver- table). (<i>MS-PS1-4</i>) ple print and digital sources, using search t ata and conclusions of others while avoidin	erms effectively; assess the credibility an
	major technological develop	ments revolutionized land and water trans	portation, as well as the economy, in New
Career Ready Practices: CRP6: Demonstrate crea	tivity and innovation.		
	ps in the design process that	would be used to solve a designated proble materials and measurements labeled.	em.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
Obtaining, Evaluating, and Communicating Information	 PS1.A: Structure and Properties of Matter Each pure substance has characteristic 	 Structure and Function Structures can be designed to serve 	
• Gather, read, and synthesize information from multiple appropriate sources and assess	physical and chemical properties (for any bulk quantity under given conditions) that	particular functions by taking into account properties of different materials, and how	

 the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-PS1-3) Developing and Using Models Develop a model to predict and/or describe phenomena. (MS-PS1-4) 	 can be used to identify it. (MS-PS1-3) Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4) In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2),(MS-PS1-3) 	 materials can be shaped and used. (MS-PS1-3) Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4) <i>Connections to Engineering, Technology, and Applications of Science</i> Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3)
	 PS3.A: Definitions of Energy The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes 	 Influence of Science, Engineering and Technology on Society and the Natural World The uses of technologies and any limitation on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-PS1-3)

called the total internal energy) of a syste depends jointly on the temperature, the temperature of atoms in the system, and the so of the material. (secondary to MS-PS1-4)	otal tate
--	--------------