Englewood Public School District

Algebra 1
Fourth Marking Period

Unit 4: Radical and Rational Expressions and Equations and Data Analysis

Overview: During this unit, students will investigate radical and rational expressions and work with Data Analysis and Probability.
Time Frame: 43 to 47 Days

Enduring Understandings:

- Radical and rational expressions can be represented in different ways.
- To simplify a square root factor out a perfect square from the radicand.
- Square root functions contain a variable in the radicand. The parent square root function is $y=\sqrt{x}$.
- To isolate the variable in a radical equation first isolate the radical, then square both sides.
- When a rational expression is simplified, the numerator and denominator have no common factors other than 1 .
- Rational functions have equations of the form $f(x)=$ polynomial \div polynomial. The graph of a rational function may have vertical and horizontal asymptotes.
- To isolate the variable in a rational equation, multiply by the LCD and then solve the resulting equation. Check for extraneous solutions.
- When collecting data, a sampling technique should be used that is free of bias.
- Standard measures can be used to describe data sets, make estimates, decisions, or predictions.
- Matrices, frequency tables, histograms, box and whisker plots, tree diagrams and other representations can be used to describe data sets.
- Theoretical and experimental probabilities can be used to make decisions or predictions about future events.

Essential Questions:

- How are radical expressions represented?
- What are the characteristics of square root functions?
- How can you solve a radical equation?
- How are rational expressions represented?
- What are the characteristics of rational expressions?
- How can you solve a rational equation?
- How can collecting and organizing data help you make decisions or predictions?
- How can you make and interpret different representations of data?
- How is probability related to real world events?

algebra system.	solve a rational equation - Understand the concept of an extraneous solution - Find the measures of central tendency - Examine samples and conduct surveys - Make predictions based upon data they collect and observe - Organize data in displays - Compare theoretical and experimental probabilities - Find probabilities of simple and compound	$\underline{\text { sks/1915 }}$	https://teacher.desmos.com/	
A-APR.D. 7 Understand that				Create posters illustrating the main
system analogous to the		Dating	http://kutasoftware.com/free.	objectives of the unit
rational numbers, closed		https://www.illustrativema	html	(CRP6)
under addition, subtraction,		thematics.org/content-	(CRP2, CRP4, CRP8,	
multiplication, and division				
by a nonzero rational		$\underline{1782}$		
multiply, and divide rational		Haircut Costs	interactive, videos, games,	
expressions.		https://www.illustrativema	lessons, homework:	
F-IF.A. 2 Use function notation, evaluate functions		thematics.org/contentstandards/HSS/ID/A/2/tas	https://www.opened.com/sea rch?area=mathematics\&grad	
for inputs in their domains,		ks/942	e=9\&offset=0\&resource typ	
and interpret statements that use function notation in		Speed Trap	e=interactive-assessment (CRP2, CRP4, CRP8,	
terms of a context.		https://www.illustrativema	9.3.ST.2, 9.3.ST-ET.5,	
F-IF.B. 4 For a function that		thematics.org/content-	8.1.12.A.3)	
models a relationship		standards/HSS/ID/A/2/tas		
between two quantities,		ks/1027	Algebra common core	
interpret key features of			worksheets:	
graphs and tables in terms		Musical Preferences	https://www.ixl.com/math/al	
of the quantities, and sketch		https://www.illustrativema	gebra-1	
graphs showing key features		thematics.org/content-	(CRP2, CRP4, CRP8,	
given a verbal description of		standards/HSS/ID/B/5/tas	9.3.ST.2, 9.3.ST-ET.5)	
the relationship.		ks/123		
F-IF.B. 5 Relate the domain			Khan Academy - videos,	
of a function to its graph		Support for a Longer	lessons, assessments	
and, where applicable, to the		School Day	www.khanacademy.org	
quantitative relationship it		https://www.illustrativema	(CRP2, CRP4, CRP8,	
describes.		thematics.org/content-	CRP11, 9.3.ST.2, 9.3.ST-	
F-IF.C.7b Graph square		standards/HSS/ID/B/5/tas	ET.5, 8.1.12.A.3)	
root, cube root, and		ks/2044		
piecewise-defined functions,			Worksheets / assessment	
including step functions and		Cards and Independence	items for all topics based on	
absolute value functions.		https://www.illustrativema	standards:	
G-SRT.C.6 Understand that		thematics.org/content-	http://jmap.org/JMAP_RES	
by similarity, side ratios in		standards/HSS/CP/A/2/tas	OURCES_BY_TOPIC.htm\#	

right triangles are properties of the angles in	ks/943	$\frac{\mathrm{AI}}{(\mathrm{CRP} 2, ~ C R P 4, ~ C R P 8, ~}$
the triangle, leading to	The Titanic 2	9.3.ST.2, 9.3.ST-ET.5)
definitions of trigonometric	https://www.illustrativema	
ratios for acute angles.	thematics.org/content-	
G-SRT.C. 8 Use	standards/HSS/CP/A/2/tas	
trigonometric ratios and the	ks/950	
Pythagorean Theorem to solve right triangles in applied problems.	Rain and Lightning https://www.illustrativema	
-ID.A. 1 Represent data	thematics.org/content-	
with plots on the real	standards/HSS/CP/A/2/tas	
number line (dot plots,	ks/1112	
histograms, and box plots). S-ID.A. 2 Use statistics	Box Plot	
appropriate to the shape of	https://www.illustrativema	
the data distribution to	thematics.org/content-	
compare center (median,	standards/HSS/CP/A/2/tas	
mean) and spread	ks/1112	
(interquartile range,		
standard deviation) of two or more different data sets.	Coin Tossing http://nlvm.usu.edu/en/nav	
S-ID.A. 3 Interpret	/frames_asid_305_g_4_t	
differences in shape, center,	5.html?from=category_g	
and spread in the context of the data sets, accounting for	4_t 5.html	
possible effects of extreme	Hamlet Happens	
data points (outliers).	http://nlvm.usu.edu/en/nav	
S-ID.A. 4 Use the mean and	/frames asid 310_g_4_t	
standard deviation of a data	5.html?from=category_g	
set to fit it to a normal	$4 \mathrm{t} 5 . \mathrm{html}$	
distribution and to estimate population percentages.	Spinners	
Recognize that there are	http://nlvm.usu.edu/en/nav	
data sets for which such a	/frames_asid_186 g 4 t	
procedure is not	5.html?open=activities\&fr	
appropriate. Use	om=category g 4 4 t 5.ht	
calculators, spreadsheets,		

and tables to estimate areas under the normal curve. S-ID.B. 5 Summarize	Dartboard Probability http://alex.state.al.us/lesso
categorical data for two categories in two-way	n view.php? $\mathrm{id}=26387$
frequency tables. Interpret relative frequencies in the	Dice Roll Project http://alex.state.al.us/lesso
context of the data (including joint, marginal, and conditional relative	n view.php?id=14515 Representing Data with
frequencies). Recognize possible associations and	Box Plots http://map.mathshell.org/l
trends in the data.	essons.php?unit=9420\&co
S-IC.B. 5 Use data from a randomized experiment to	$\underline{\text { llection=8 }}$
compare two treatments;	Representing
use simulations to decide if	Trigonometric Functions
differences between	http://map.mathshell.org/l
parameters are significant.	essons.php?unit=9255\&co
S-CP.A. 1 Describe events as subsets of a sample space	$\underline{\text { llection }=8}$
(the set of outcomes) using	Trigonometric Ratios
characteristics (or	https://education.ti.com/en
categories) of the outcomes,	/us/activity/detail?id=B48
or as unions, intersections,	16CC00264432DB10DE6
or complements of other	3BEA361239\&ref=/en/us/
events ("or," "and," "not").	activity/search/advanced
S-CP.A. 2 Understand that	Perms and Combs
independent if the	https://education.ti.com/en
probability of \boldsymbol{A} and \boldsymbol{B}	/us/activity/detail?id=20F
occurring together is the	FE01257E74EC7BCC53
product of their	DDB8289BE4E\&ref=/en/
probabilities, and use this	us/activity/search/advance
characterization to	$\underline{\text { d }}$
determine if they are	
independent.	Everything you need to
S-CP.A. 3 Understand the	know about math journals:

conditional probability of A	https://thecornerstoneforte
given B as $P(\boldsymbol{A}$ and $\boldsymbol{B}) / P(B)$,	achers.com/math-journals/
and interpret independence	(NJSLSA.R1,
of A and B as saying that the	NJSLSA.W2,
conditional probability of A	NJSLSA.L1, SL.9-10.4,
given B is the same as the probability of A, and the	NJSLSA.L6)
conditional probability of \boldsymbol{B}	Additional texts:
given A is the same as the	www.newsela.com
probability of B.	www.readworks.org
S-CP.A. 4 Construct and	www.commonlit.org
interpret two-way frequency	
tables of data when two	
categories are associated	
with each object being	
classified. Use the two-way	
table as a sample space to	
decide if events are	
independent and to	
approximate conditional	
probabilities.	
S-CP.A. 5 Recognize and	
explain the concepts of	
conditional probability and	
independence in everyday	
language and everydaysituations.	
S-CP.B. 7 Apply the	
Addition Rule, P(A or B $)=$	
$\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \text { and } \mathbf{B})$	
and interpret the answer in	
S-CP.B. 8 Apply the general	
Multiplication Rule in a	
uniform probability model,	
$\mathbf{P}(\mathbf{A}$ and $\mathbf{B})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B} \mid \mathbf{A})=$	
$\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$, and interpret	
the answer in terms of the	

Key Vocabulary:

Conditional, conjugates, extraneous solution, hypotenuse, like radicals, Pythagorean Theorem, radical expression, square root function, trigonometric ratios, asymptote, constant of variation for an inverse variation, excluded value, inverse variation, rational equation, rational expression, rational function, combination, event, matrix, measure of central tendency, outcome, outlier, permutation, probability, quartile, sample space

Accommodations and Modifications:

Students with special needs: Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all instructional leaders. Modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered. Additional staff should be included so all students can fully participate in the standards associated with this curriculum.

ELL/ESL students: Students will be supported according to the recommendations for "can do's" as outlined by WIDA -
https://www.wida.us/standards/CAN_DOs/
Students at risk of school failure: Formative and summative data will be used to monitor student success at first signs of failure. Student work will be reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations. More time will be made available with a certified instructor to aid students in reaching the standards.

Gifted and Talented Students: Students excelling in mastery of standards will be challenged with complex, high level challenges.
English Language Learners:

- Teaching modeling
- Peer modeling
- Word walls
- Give directions in small steps and in as few words as possible
- Provide visual aids
- Group similar problems together
- Repeat directions when necessary

Special Education:

- Utilize modifications \& accommodations delineated in the students' IEP
- Work with paraprofessional
- Work with a partner
- Shorten assignments to focus on mastery or key concepts
- Maintain adequate space between desks
- Keep workspaces clear of

At-Risk:

- Use visual demonstrations, illustrations and models
- Give directions / instructions verbally and in simple written format
- Peer support
- Increased one - on - one time
- Teachers may modify instructions by modeling what the student is expected

Gifted and Talented:

- Inquiry based instruction
- Independent study
- Higher order thinking skills
- Adjusting the pace of the lessons
- Real world scenarios
- Student driven instruction
- Allow students to complete an independent project as an alternative
- Provide a vocabulary list with definitions
- Use of alge-tiles when needed
- Use of number line when needed
unrelated materials
- Provide fewer problems to attain passing grades
- Tape a number line to the students desk
- Create a math journal that they can use during class, on assignments and (if teacher allows) on assessments
- Provide extra time to complete a task when needed
- Provide definitions of different graphs / charts with illustrations
- Allow tests to be taken in a separate room
- Allow students to use a calculator when appropriate
- Divide test into small sections of similar questions or problems
- Use of alge-tiles when needed
- Use of number line when needed

to do

- Instructions may be printed out in large print and hung up for the students to see during the time of the lesson
- Review behavior expectations and make adjustments
- Create a math journal that they can use during class, on assignments and (if teacher allows) on assessments
- Allow students to complete an independent project as an alternative test
- Use of alge-tiles when needed
- Use of number line when needed

Interdisciplinary Connections: ELA
NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.W2. Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization, and analysis of content
NJSLSA.L1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking
SL.9-10.4: Present information, findings and supporting evidence clearly, concisely and logically. The content, organization, development and style are appropriate to task, purpose and audience.
NJSLSA.L6: Acquire and use accurately a range of general academic and domain-specific words and phrases sufficient for reading, writing,

> speaking and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when encountering an unknown term important to comprehension or expression.

$21^{\text {st }}$ Century Standards

9.2.12.C.1: Review career goals and determine steps necessary for attainment.
9.2.12.C.2: Modify Personalized Student Learning Plans to support declared career goals.
9.3.ST.2: Use technology to acquire, manipulate, analyze and report data.
9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.

Career Ready Practices:

CRP2: Apply appropriate academic and technical skills
CRP4: Communicate clearly and effectively and with reason
CRP6: Demonstrate creativity and innovation
CRP8: Utilize critical thinking to make sense of problems and persevere in solving them
CRP11: Use technology to enhance productivity
Technology Standards:
8.1.12.A.3: Collaborate in online courses, learning communities, social networks or virtual worlds to discuss a resolution to a problem or issue.

Additional (Identified by PARCC Model Content Frameworks)

