GRADE 8

EPSD Unit 4: Force and Motion Second Marking Period

Overview: Students use system and system models and stability and change to understanding ideas related to why some objects will keep moving and why objects fall to the ground. Students apply Newton's third law of motion to related forces to explain the motion of objects. Students also apply an engineering practice and concept to solve a problem caused when objects collide. The crosscutting concepts of system and system models and stability and change provide a framework for understanding the disciplinary core ideas. Students demonstrate proficiency in asking questions, planning and carrying out investigations, designing solutions, engaging in argument from evidence, developing and using models, and constructing explanations and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.		Science Dimensions Program Resources Module K				
		Unit 1: Forces and Motion Unit Video (ice skater using force); Why it Matters p. 2; Unit Starter p. 3; Unit Project p. 3K; Unit Review pp. 87-90; Vocabulary 3I; Unit Connections pp. 3j, 86; Unit Performance Task p. 91				
		 Standard for all Units: (D) Interactive Multilingual Glossary; (D/P) Unit Pretest; (D) Lesson Quizzes; (D/P) Unit Tests Note: Refer to the Curriculum Alignment Common Language (CACL) Guide to decipher acronyms. 				
		Lesson 1: Introduction to Forces pp. 4-23 D/P- WIM Questions p. 2	Lesson 2: Gravity and Friction pp. 24- 43 D/P- WIM Questions p. 2	Lesson 3: Newton's Laws of Motion pp. 44-67 D/P- WIM Questions p. 2	Lesson 4: Engineer It: Collisions between Objects pp. 68-85 D/P- WIM	
Standards: (MS-PS2-1) Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects. (MS-PS2-2) Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the	Instructional Days: 25-30	D/P- CYEI (video) Which dog will win the tug of war? p. 5 P- ENB (prompt) Students gather evidence to explain	D/P- CYEI (video) Why did the two objects fall together? p. 25 P- ENB (prompt) Students Gather evidence to explain	D/P- CYEI (video) Why does the golf tee fall into the bottle when the hoop is pulled? p. 45	Questions p. 2 D/P- CYEI (video) How can Newton's laws be applied to protect a smartphone screen during a collision? p. 69	

EPSD Curriculum and

HMH SCIENCE DIMENSIONS 2018 Alignment TEMPLATE

object and the mass of the object. (MS-PS2-4) Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. (MS-ETS1-1) Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (MS-ETS1-2) **Evaluate competing design** solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. (MS-ETS1-3) Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. (MS-ETS1-4) Develop a model to generate data for iterative testing and modification of a

how forces affect P-ENB (prompt) how forces can Students gather help predict which falling objects. p. evidence to help dog will win the 25 tug of war. p. 5 **D/P-DTM Students** explain the motion D/P- Students of the golf tee. p. use the ratio the force of gravity watch Video of a 44 D/P- Describing bulldozer using between an object force. p. 7 and Jupiter and the Motions (Students force of gravity P-LS Write a watch video scientific argument between an object showing the describing the and Earth to position of a flock situation and calculate the of starling to forces being objects weight on understand applied. p. 8 Jupiter. p. 27 motion, in terms of P-ENB (prompt) D/P- HOL Activity speed, velocity and Draw a diagram of Investigate Falling acceleration.) p. 46 **D/P-DTM Students** dogs playing tug of Objects: Mass p. 29 P-ENB (prompt) war. Which forces reason abstractly will affect the Students identify and quantitatively outcome? p. 11 how their to interpret the D/P- HOL Activity observations help graph and **Observe Everyday** them interpret the determine the Forces image of the apple average speed. p. pp. 13-14 and the feather 48 D/P- DTM Students falling? p. 29 **D/P-DTM Students** work with signed work with signed D/P-LS Analyze numbers, which Gravitational Force numbers and represent the (Students use interpret magnitude of evidence provided expressions to forces in opposite by the image as a calculate velocities. directions. p. 18 premise for logical p. 49 P-ENB (prompt) arguments about **D/P-DTM Students** Think about two how the distance work with signed

P-ENB (prompt) Students record evidence that helps them determine how to protect a smartphone screen during a collision. p. 69 D/P- Newton's Second Law of Motion and Collisions: Robots Collide with Identical Balls (A satellite collides with debris in space. Students draw a picture showing the collision) p. 71 D/P- Newton's First law of Motion and **Collisions (Students** collaborate with a partner, analyze the collision shown in the photo, and use their knowledge of Newton's laws of motion and collisions to

proposed object, tool, or process such that an optimal design can be achieved. Objectives: Students will: Apply N law to design a solution to a prob the motion of two colliding object investigation individually and coll provide evidence that the change	lem involving ts. Plan an aboratively to	dogs playing tug of war. What data do you need to calculate the net force on the rope? p. 18 D/P- ENGIT Explain Net Forces (Students analyze	between two objects affects the gravitational force they exert on each other.) p. 31 D/P- Exploring Friction Students watch video and explore online	numbers and interpret expressions to calculate acceleration. p. 50 D/P-Friction and Newton's First Law (Students watch Video of penguins	describe the motion of the car throughout the collision.) p. 72 D/P- DTM Analyze Acceleration During a Collision (Students analyze the motion before
motion depends on the sum of the object and the mass of the object		why trains might need multiple	to identify why they think one flask	moving across the frozen ground and	and after two marbles collide and
Topics: Motion Acceleration Forc Gravity Newton's Laws	e Friction	locomotives.) p. 18 D/P- TIF (enrich) Roller Coaster	of rice can be lifted with the chopstick and the other cannot. pp. 32-33	discuss their explanations for the motion of the penguins.) p. 53	use positive and negative numbers to determine the changes in speed.)
Twenty-First Century Themes and The Four C's • Life and Career Ski and Media literacy		Restraint pp. 19-20 D- Hands-On Labs; TV Science	D/P- HOL Activity Investigate Friction (Students	P-ENB (prompt) How does Newton's first law	p. 74 D/P- Collisions with Objects in Contact
Essential Questions : How can we motion of an object? If I were abl air resistance and dropped a feat hammer at the same time, which first?	e to eliminate her and a	Advisors; Propose Your Own Path D/P- Lesson Self Check pp. 21-23 D- Lesson Quiz D-Make Your Own Study Guide	investigate the force needed to move an object against different surfaces and use the evidence they collect to develop an argument about the relationship	apply to the motion of the golf tee that falls from the hoop into the bottle? p. 54 P/D ENGIT Design Vehicles for Safety (Students analyze how airbags solve a	(Students watch video of the motion of the balls in the Newton's cradle to observe an example of how collisions work when objects are in contact.) p 75
		P- DI (ELL/RTI) p. 31 P- Extension p. 31 P- COLLAB p. 3J P- Connections to Other Disciplines p. 3J	they observed.) p. 34 D/P- HOL Activity Investigating Falling Objects: Air Resistance	problem and if they would work in another situation.) p. 54 D/P- HOL Activity Investigate Motion	D/P- LS Based on Newton's laws of motion, students make a claim about, whether or not, once Newton's

	(Students describe	(Students use a	cradle is set in
D-Science Safety	the force of air	cart to explore the	motion, it stays in
HB	resistance and how	relationship	motion forever. p.
D- CCC-HB	it affects the	between force,	75
D- ELA-HB	motion of a	mass, and	P- ENB (prompt)
D- M-HB	parachute.) p. 37	acceleration.) pp.	Why might a
D- SEP-HB	D/P- ENB (prompt)	56-57	smartphone be
D-ScienceSaurus	Students compare	D/P- DTM Students	damaged when it
Reference HB	the falling objects	complete a table	falls on a hard
	that they observed	and a graph to	surface? Students
D- VBP Animals in	and the objects	relate force, mass,	record evidence in
Motion	shown in the photo	and acceleration	their ENB. p. 75
	at the beginning of	and then compare	D/P- Effects of
	the lesson. p. 38	the data to the	Collisions (Students
	D/P- ENGIT	data from the	imagine a stunt
	Improve a	Hands-on-Lab. pp.	person falling onto
	Parachute	58-59	an airbag. The
	(Students use their	P -ENB (prompt)	airbag is designed
	knowledge of air	How does	to slowly bring the
	resistance to	Newton's second	stunt person to a
	determine how to	law apply to the	rest. Students then
	optimize an	golf tee balanced	imagine the
	engineer's	on the hoop? How	collision in slow
	parachute design.)	does Newton's	motion. Students
	p. 38	second law apply	draw a series of
		to the golf tee	three images
	D/P- TIF (enrich)	when the hoop is	showing the
	Gravity and Space-	being pulled away?	motion of the stunt
	Time pp. 39-40	p. 59	person at the
	D- Snowboarding	D/P-ENGIT Relate	beginning, the
	and Forces;	Vehicle Mass to	middle, and the
	Propose Your Own	Performance	end of the collision
	Path	(Students use their	
		(= 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	

Study Guide support their

EPSD Curriculum and H	MH SCIENCE DIN	IENSIONS 2018	Alignment TEMP	LATE
			P- DI (ELL/RTI) p. 31 P- Extension p. 31 P- COLLAB p. 3J P- Connections to Other Disciplines p. 3J D-Science Safety HB D- CCC-HB D- ELA-HB D- M-HB D- SEP-HB D-ScienceSaurus Reference HB D- VBP Animals in Motion D- VL Sliding Downhill	P- ENB (prompt) Students explain how the lab results can help them design protection for a smartphone screen during a collision. Students record evidence in their ENB. p. 79 D/P- DTM Analyze the Effect of Collision Duration on Acceleration (Students calculate the acceleration of two objects involved in a collision.) p. 80 D/P- TIF (enrich) Careers in Engineering: Crash Test Engineer pp. 81-82 D- Wrecking Ball Demolitions; Propose Your Own Path D/P- Lesson Self Check pp. 83-85 D- Lesson Quiz

EPSD Curriculum and HMH SCIENCE DIN	IENSIONS 2018 Alignment TEMPLATE
	D-Make Your Own Study Guide
	P- DI (ELL/RTI) p. 3I P- Extension p. 3I P- COLLAB p. 3J P- Connections to Other Disciplines p. 3J
	D-Science Safety HB D- CCC-HB D- ELA-HB D- M-HB D- M-HB D- SEP-HB D-ScienceSaurus Reference HB
	D- YSI Simulation How Can You Design a Safer Road?

Curriculum Alignment Common Language (CACL) Guide 6-8				
Acronym	Word/Phrase	Description		
CER	Claims Evidence Reasoning	Students make a claim and gather evidence along the way (during EXPLORATORY activities) to support claim.		
ССС-НВ	Crosscutting Handbook	Students who need extra support in grasping concepts or to refresh student knowledge of skills.		
CYEI	Can You Explain It	Lesson phenomenon used to ENGAGE students in learning at the beginning of the lesson.		
CYSI	Can You Solve It	Lesson phenomenon used to ENGAGE students in learning at the beginning of the lesson.		
D	Digital	Program resources and features in interactive digital form.		
DI (ELL/RTI) Extension COLLAB Connections to Other Disciplines	Differentiated Instruction (English Language Learner/Response to Intervention) Collaboration Connections to Other Disciplines	A page that lists all learning activities used to differentiate learning, engage students in collaborative activities and connect learning to other subjects.		
DTM	Do the Math	Integrated subject learning.		
ENB	Evidence Notebook	Student notebook or journal used to gather evidence during EXPLORATORY learning activities to support their claims.		
ENGIT	Engineer It	Integrated subject learning.		
ELA-HB	English Language Arts Handbook	Students who need extra support in grasping concepts or to refresh student knowledge of skills.		
HOL	Hands-On Lab	Activities or experiments that enable students to demonstrate scientific procedures and analysis.		
LS	Language SmArts	Integrated subject learning.		

M-HB	Math Handbook	Students who need extra support in grasping concepts or to refresh student knowledge of skills.
Р	Print	Program resources and features in print form.
SEP-HB	Science and Engineer Practices Handbook	Students who need extra support in grasping concepts or to refresh student knowledge of skills.
TIF	Take It Further (enrich)	Enrichment activities for students in digital or print.
VBP	Video Based Project	Real life videos related to science and/or engineering that enable students to demonstrate mastery of performance expectations.
VL	Virtual Lab	Fully interactive simulations in which students perform experiments, collect data and answer questions.
WIM	Why It Matters	Questions related to lessons within each unit that asks students to consider how science affects the world around them.
YSI	You Solve It (Simulation)	Open-ended simulation-based learning with multiple answer options.