Englewood Public School District
 Algebra II
 Second Marking Period

Unit 2: Polynomial, Radical, Rational, and Logarithmic Functions

Overview: During this unit, students will investigate polynomial, radical, rational, and logarithmic expressions and equations including their graphs.

Time Frame: 43 to 47 Days

Enduring Understandings:

- A polynomial of degree n has n linear factors. The graph of the related function crosses the x-axis an even or odd number of times depending on whether n is even or odd.
- $(x-a)$ is a linear factor if and only if a is a zero and a root and if and only if $(a, 0)$ is an x-intercept when a is a real number.
- You can simplify the $n^{\text {th }}$ root of an expression that contains an $n^{\text {th }}$ power as a factor.
- When you square each side of an equation the resulting equation may have more solutions than the original equation
- Iff and f^{-1} are inverse functions and if one maps a to b then the other maps b to a.
- The function $y=a b^{x}$ where $a>0$ and $b>1$ models exponential growth. When $0<b<1$ the function models decay.
- Logarithms are exponents.
- Exponential functions and logarithms are inverse operations.
- Quantities are inversely proportional only if increasing one quantity by a factor means shrinking the other factor by the inverse.
- A rational function may have zero or one horizontal or oblique asymptote, and zero or more vertical asymptotes.

Essential Questions:

- What does the degree of a polynomial tell you about its related polynomial function?
- For a polynomial function how are factors, zeros, and x-intercepts related?
- For a polynomial equation how are factors and roots related?
- To simplify nth root of an expression, what must be true about the expression?
- When you square each side of an equation, is the resulting equation equivalent to the original?
- How are a function and its inverse function related?
- How do you model a quantity that changes regularly over time by the same percentage?
- How are exponents and logarithms related?
- How are exponential functions and logarithmic functions related?
- Are two quantities inversely proportional if an increase in one corresponds to a decrease in the other?
- What kinds of asymptotes are possible for a rational function?
- Are rational expression and its simplified form equivalent?

Standards	Topics and Objectives	Activities	Resources	Assessments
MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8 N-CN.C. 7 Solve quadratic equations with real coefficients that have complex solutions N-CN.C. 8 Extend polynomial identities to the complex numbers N-CN.C. 9 Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials A-SSE.A.1a, b Interpret expressions that represent a quantity in terms of its context A-SSE.A. 2 Use the structure of an expression to identify ways to rewrite it. A-SSE.B.3c Use the properties of exponents to transform expressions for exponential functions A-CED.A. 1 Create equations and inequalities in one variable and use them to solve problems A-CED.A. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and seales A-CED.A. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context	Topics Polynomials, linear factors, zeros, dividing polynomials, Fundamental Theorem of Algebra, Binomial Theorem, radical expressions, radical exponents, solving radical equations, inverse relations and functions, exponential functions, logarithmic functions, exponential and logarithmic equations, natural logs, rational functions and their graphs, adding and subtracting rational expressions, solving rational equations Twenty-First Century Themes and Skills include: - The Four C's - Global awareness - Financial, economic, business and entrepreneurial literacy Objectives Students will - Classify polynomials - Graph polynomial functions and describe their end behavior - Analyze the factored form of a polynomial - Write a polynomial function from its zeros - Solve polynomials by graphing or factoring - Divide polynomials using	Standards Solution Common Core Algebra Lessons: - Population Growth and Decay - Finding the Greatest Investment - Dividing Polynomials Standards Solution Common Core Function lessons: - Linear Vs. Exponential Non Negative Polynomials https://www.illustrativemath ematics.org/contentstandards/HSA/APR/A/1/tas ks/1656 Solving a Simple Cubic Equation https://www.illustrativemath ematics.org/contentstandards/HSA/APR/B/3/tas ks/2138 Powers of 11 https://www.illustrativemath ematics.org/contentstandards/HSA/APR/C/5/tas ks/1654 Combined Fuel Efficiency https://www.illustrativemath ematics.org/contentstandards/HSA/APR/D/6/tas ks/825 Egyptian Fractions II https://www.illustrativemath ematics.org/contentstandards/HSA/APR/D/6/tas ks/1346	Pearson Realize Chapters 5, 6, 7 , and 8 Standards Solution Common Core Lessons Illustrative Mathematics https://www.illustrativemathem atics.org/ Alabama Learning Exchange http://alex.state.al.us/search.php ?fa_submit=ALLPLANS Arizona Math Flipbook http://www.azed.gov/azcommo ncore/files/2012/11/high-school-ccss-flip-book-usd-2592012.pdf NYC Department of Education http://schools.nyc.gov/default.ht m Mathematics Assessment Project http://map.mathshell.org/ Texas Instruments https://education.ti.com/en/us/h ome Desmos https://teacher.desmos.com/ Worksheets for every topic: http://kutasoftware.com/free. html (CRP2, CRP4, CRP8, 9.3.ST.2, 9.3.ST-ET.5) Algebra assessments,	Formative Assessments: Textbook Pages 311, 347, 353, 389, 427, 428, 461, 491, 492, 526, 557, 558 Math journal (NJSLSA.R1, NJSLSA.W2) Summative Assessments: Multiple choice / short answer assessments (CRP2, CRP4, CRP8) Chapter quizzes/tests - Pearson Realize - MathXL Grade 11 Algebra II Common Core Assessment 2, Standards Solution Benchmark Assessment: Midterm Assessment Alternative Assessments: Learning centers: each learning center focuses on a different type of problem (9.3.ST.2, 9.3.ST-ET.5) Create posters illustrating the main objectives of the unit

rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions

A-REI.A. 2 Solve simple

 rational and radical equations in one variable, and give examples showing how extraneous solutions may arise
A-REI.D. 11 Explain why the

 x--coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functionsF-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship F-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes
F-IF.B. 6 Calculate and

- Use the properties of logarithms
- Solve exponential and logarithmic equations
- Evaluate and simplify natural logarithmic expressions
- Solve equations using natural logarithms
- Recognize and use inverse, joint, and other variations
- Graph reciprocal functions
- Graph translations of reciprocal functions
- Identify properties and graph rational functions
- Simplify rational expressions
- Add, subtract, multiply and divide rational expressions
- Solve rational equations
- Use rational equations to solve problems
standards/HSF/LE/A/4/tasks 1570

Newton's Law of Cooling
https://www.illustrativemath ematics.org/content-
standards/HSF/LE/A/4/tasks 1382

Exponential Growth and

Decay

http://alex.state.al.us/lesson_ view.php?id=24092

Modeling Exponential
Growth: Having Kittens
http://map.mathshell.org/less ons.php?unit=9100\&collecti on=8\&redir=1

Representing Linear and Exponential Growth
http://map.mathshell.org/less ons.php?unit=9240\&collecti on=8

Representing Polynomials Graphically
http://map.mathshell.org/less ons.php?unit=9270\&collecti on=8

Exponential Reflections
https://education.ti.com/en/8
4activitycentral/us/detail?id= A99AC1F511BB4C97924D 7A9B8960F046\&t=4630994 C160747DFAA66A7E4C9F 6A26A

Exponential Growth
https://education.ti.com/en/8
4activitycentral/us/detail?id=

interpret the average rate of	FABF80DD572743E89EBE
change of a function	4 A 8 BB2BB9202\&t=463099
(presented symbolically or as	4C160747DFAA66A7E4C9
a table) over a specified	F6A26A
interval. Fstimate the rate of change from a graph.	Change of Base
F-IF.C.7b, c, e Graph	https://education.ti.com/en/8
functions expressed	4activitycentral/us/detail?id=
symbolically and show key	9841154F449B4F6595FA75
features of the graph, by hand	0ACCF5099C\&t=4630994C
in simple cases and using	160747DFAA66A7E4C9F6
technology for more complicated cases	A26A
F-IIF.C. 8 Write a function	Properties of Logarithms
defined by an expression in	https://education.ti.com/en/8
different but equivalent forms	4activitycentral/us/detail?id=
to reveal and explain different	E71949690CAA4D83844C4
properties of the function	68080CCE18B\&t=4630994
F-IF.C. 9 Compare properties	C160747DFAA66A7E4C9F
of two functions each	6A26A
represented in a different way (algebraically, graphically,	Asymptotes and Zeros of
numerically in tables, or by	Rational functions
verbal descriptions).	https://education.ti.com/en/8
F-BF.A.1b Combine standard	4activitycentral/us/detail?id=
function types using	B13C4236F1214CACBC38
arithmetic operations	8DCF123D7288\&t=632C9D
F-BR, B. 3 Identify the effect on	5E616E4C03ABB301E7B4
the graph of replacing $f(x)$ by	02 C 773
$f(x)+k, k f(x), f(k x)$, and $f(x+$	
k) for specific values of k	Polygraph: Exponential and
(both positive and negative);	Logarithmic Functions
find the value of k given the	https://teacher.desmos.com/p
graphs. Experiment with	olygraph/custom/560ad2905
cases and illustrate an	8fd074d156300af
explanation of the effects on	
the graph using technology.	Logarithmic Functions
T-BP. P. 4a Solve an equation	https://teacher.desmos.com/a
of the form $\mathrm{f}(\mathrm{x})=\mathrm{c}$ for a	ctivitybuilder/custom/56d87
simple function f that has an	38 eafc 5524106002 f 6 d
inverse and write an	
expression for the inverse	Transformations of the
F-LE. 4 Understand the	Logarithmic Function

Key Vocabulary:

End behavior, monomial, multiplicity, Pascal's Triangle, polynomial function, relative maximum, relative minimum, standard form of a polynomial function, synthetic division, turning point, composite function, inverse function, nth root, principal root, radical equation, radicand, rational exponent,
rationalize the denominator, square root equation, square root function, asymptote, Change of Base Formula, common logarithm, exponential equation, exponential function, exponential growth, logarithm, logarithmic equation, logarithmic function, natural logarithmic function

Accommodations and Modifications:

Students with special needs: Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all instructional leaders. Modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered. Additional staff should be included so all students can fully participate in the standards associated with this curriculum.

ELL/ESL students: Students will be supported according to the recommendations for "can do's" as outlined by WIDA -
https://www.wida.us/standards/CAN DOs/
Students at risk of school failure: Formative and summative data will be used to monitor student success at first signs of failure. Student work will be reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations. More time will be made available with a certified instructor to aid students in reaching the standards.

Gifted and Talented Students: Students excelling in mastery of standards will be challenged with complex, high level challenges.

English Language Learners:

- Teaching modeling
- Peer modeling
- Word walls
- Give directions in small steps and in as few words as possible
- Provide visual aids
- Group similar problems together
- Repeat directions when necessary
- Provide a vocabulary list with definitions
- Use of alge-tiles when needed
- Use of number line when needed

Special Education:

- Utilize modifications \& accommodations delineated in the students' IEP
- Work with paraprofessional
- Work with a partner
- Shorten assignments to focus on mastery or key concepts
- Maintain adequate space between desks
- Keep workspaces clear of unrelated materials
- Provide fewer problems to attain passing grades
- Tape a number line to the student's desk
- Create a math journal that

At-Risk:

- Use visual demonstrations, illustrations and models
- Give directions / instructions verbally and in simple written format
- Peer support
- Increased one - on - one time
- Teachers may modify instructions by modeling what the student is expected to do
- Instructions may be printed out in large print and hung up for the students to see during the time of the lesson

Gifted and Talented:

- Inquiry based instruction
- Independent study
- Higher order thinking skills
- Adjusting the pace of the lessons
- Real world scenarios
- Student driven instruction
- Allow students to complete an independent project as an alternative test

	they can use during class, on assignments and (if teacher allows) on assessments - Provide extra time to complete a task when needed - Provide definitions of different graphs / charts with illustrations - Allow tests to be taken in a separate room - Allow students to use a calculator when appropriate - Divide test into small sections of similar questions or problems - Use of alge-tiles when needed - Use of number line when needed	- Review behavior expectations and make adjustments - Create a math journal that they can use during class, on assignments and (if teacher allows) on assessments - Allow students to complete an independent project as an alternative test - Use of alge-tiles when needed - Use of number line when needed	
Interdisciplinary Connections: ELA NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text. NJSLSA.W2. Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization, and analysis of content			
$21^{\text {st }}$ Century Standards 9.2.12.C.1: Review career goals and determine steps necessary for attainment. 9.2.12.C.2: Modify Personalized Student Learning Plans to support declared career goals. 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data. 9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.			
Career Ready Practices: CRP2: Apply appropriate academic and technical skills			

CRP4: Communicate clearly and effectively and with reason
CRP6: Demonstrate creativity and innovation
CRP8: Utilize critical thinking to make sense of problems and persevere in solving them
CRP11: Use technology to enhance productivity
Technology Standards:
8.1.12.A.3: Collaborate in online courses, learning communities, social networks or virtual worlds to discuss a resolution to a problem or issue.

Major Supporting Additional (Identified by PARCC Model Content Frameworks)

