Perfect Squares Chart

Standard:

MGSE8.EE. 2 Use square root and cube root symbols to represent solutions to equations. Recognize that $x^{2}=p$ (where p is a positive rational number and $l \mathrm{x} l \leq 25$) has 2 solutions and $x^{3}=p$ (where p is a negative or positive rational number and $\mid \mathrm{x} l \leq$ 10) has one solution. Evaluate square roots of perfect squares ≤ 625 and cube roots of perfect cubes ≥-1000 and ≤ 1000.

Fill in the blanks.

n (principle root)	$\begin{gathered} n^{2} \\ \text { (perfect square) } \end{gathered}$	$\begin{gathered} \sqrt{n^{2}} \\ \text { (positive square root) } \end{gathered}$
1	$1^{2}=1 \cdot 1=1$	$\sqrt{1}=1$
2		
3		
5		
		$\sqrt{49}=7$
	$10^{2}=10 \cdot 10=100$	
12		
		$\sqrt{196}=14$
15		
	$16^{2}=16 \cdot 16=256$	
20		
	$22^{2}=22 \cdot 22=484$	
		$\sqrt{625}=25$

Perfect Cubes Chart

principle root	$\begin{gathered} n^{3} \\ \text { perfect cube } \end{gathered}$	$\begin{gathered} \sqrt[3]{n} \\ \text { Positive cube root } \end{gathered}$
1	$1^{3}=1 \times 1 \times 1=1$	
2	$2^{3}=2 \times 2 \times 2=$	
	$3^{3}=3 \times 3 \times 3=$	
		$\sqrt[3]{64}$
5		
	$6^{3}=6 \times 6 \times 6=$	
7		
		$\sqrt[3]{512}$
9		
10		
-1	$-1^{3}=-1 \times(-1) \times(-1)=-1$	$\sqrt[3]{-1}$
-4		
	$-6^{3}=-6 \times(-6) \times(-6)=-216$	$\sqrt[3]{-216}$
-8		
		$\sqrt[3]{-1000}$

