Englewood Public School District Mathematics
 Grade 8
 Fourth Marking Period

Unit - Fluency and In-Depth Review

Overview: During this unit, students will learn about statistics and fluency and in-depth review of grade 8 standards.
Time Frame: Chapter 10-20 days, Fluency and In-depth review - 15 days

Enduring Understandings:

A line of best fit can model the linear association of bivariate quantitative data.
A two-way table displays the relative frequencies of categorical data.

Essential Questions:

How can scatter plots be constructed and used to interpret data?
How is the line-of-best-fit used to assess data?
How can the equations for the line-of-best-fit be used to solve mathematical and real-world problems?
How can a two-way table be constructed and interpreted?

Standards	Topics and Objectives	Activities	Resources	Assessments
Chapter 10				
8.SP.A.1. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. 8.SP.A.2. Know that straight lines are widely used to model relationships between two	Topics Scatter plots, modeling linear associations, and two-way tables. Twenty-First Century Themes and Skills include: - Creativity and Innovation - Critical Thinking and Problem Solving - Communication and Collaboration	8.SP.A. 1 Texting and Grades 1 (8.1.8.D.5) 8.SP.A. 2 Animal Brains 8.SP.A. 3 US Airports 8.SP.A. 4 What's Your Favorite Subject 8.SP.A. 4 Music and Sports Math Playground http://www.mathplayground.	SE-8B: 172-215 My HRW - Online access to all Math in Focus materials listed above and Virtual Manipulatives Technology Resources - Math in Focus eBooks - Math in Focus Teacher Resources CD - Interactive Whiteboard lessons	Unit 4 Benchmark Assessment: Exact Path Summative Assessments: Math in Focus Assessments SE/TE: pp. 210, 211-215 Assessments Course 3: Chapter 10

talk-day-2-of-
2?from=mtp_lesson
(NJSLSA.W2)

Additional texts:
www.newsela.com
www.readworks.org
www.commonlit.org

Review of Gr. 8
 Standards:
 In-Depth Focus

Fluency:

8.EE.C.7. Solve linear

 equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where \boldsymbol{a} and \boldsymbol{b} are different numbers). b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.G.C.9. Know the formulas for

 the volumes of cones, cylinders,
Fluency:

8.EE. 7 Students have been working informally with onevariable linear equations since as early as kindergarten. This important line of development culminates in grade 8 with the solution of general one-variable linear equations, including cases with infinitely many solutions or no solutions as well as cases requiring algebraic manipulation using properties of operations. Coefficients and constants in these equations may be any rational numbers.
8.G. 9 When students learn to solve problems involving volumes of cones, cylinders, and spheres - together with their previous grade 7 work in angle measure, area, surface area and volume (7.G.4-6) they will have acquired a well-

| Math Playground
 http://www.mathplayground.
 $\underline{\text { com/ }}$ | North Carolina Dept of Ed.
 Wikispaces:
 http://maccss.ncdpi.wikispace | Summative Assessments: |
| :--- | :--- | :--- | :--- |
| Math Fact Practice
 http://www.playkidsgames. | $\underline{\text { s.net/Middle+School }}$ | Math in Focus Assessments |

and spheres and use them to	developed set of geometric	https://thecornerstoneforte	worksheets:	Learning centers: each
solve real-world and	measurement skills. These	achers.com/math-journals/	https://www.ixl.com/math/grad	learning center focuses on
mathematical problems.	skills, along with proportional	(NJSLSA.R1,		a different type of
	reasoning (7.RP) and multistep	NJSLSA.W2,	(CRP2, CRP4, CRP8)	problem
In-Depth Focus:	numerical problem solving (7.EE.3), can be combined and	NJSLSA.L1)		(CRP8)(9.2.8.B.3)
8.EE.B.5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships	used in flexible ways as part of modeling during high school not to mention after high school for college and careers.	Additional texts: www.newsela.com www.readworks.org www.commonlit.org	lessons, assessments www.khanacademy.org (8.1.8.A.1)	Create posters illustrating the main objectives of the unit (RH.6-8.7)
represented in different ways.	Examples of Opportunities			
For example, compare a distance-time graph to a	for In-Depth Focus:			Create a dictionary defining and illustrating
distance-time equation to	8.EE. 5 When students work			vocabulary terms
determine which of two moving objects has greater speed.	toward meeting this standard, they build on grades 6-7 work			(RH.6-8.7)
	with proportions and position			
8.EE.C.7. Solve linear	themselves for grade 8 work			
equations in one variable.	with functions and the equation of a line.			
a. Give examples of linear equations in one variable with	8.EE. 7 This is a culminating			
one solution, infinitely many	standard for solving one-			
solutions, or no solutions. Show	variable linear equations.			
the case by successively	8.EE. 8 When students work			
transforming the given	toward meeting this standard,			
equation into simpler forms,	they build on what they know			
until an equivalent equation of	about two-variable linear			
the form $x=a, a=a$, or $a=b$	equations, and they enlarge the			
results (where \boldsymbol{a} and \boldsymbol{b} are	varieties of real-world and			
different numbers).	mathematical problems they			
b. Solve linear equations with rational number coefficients,	can solve.			
including equations whose	8.F.2 Work toward meeting this			
solutions require expanding	standard repositions previous			
expressions using the	work with tables and graphs in			
distributive property and	the new context of input/output			
collecting like terms.	rules.			
8.EE.C.8. Analyze and solve	8.G.7 The Pythagorean theorem			

pairs of simultaneous linear
equations.
a. Understand that solutions to
a system of two linear
equations in two variables
correspond to points of
intersection of their graphs,
because points of intersection
satisfy both equations
simultaneously.
b. Solve systems of two linear
equations in two variables
algebraically, and estimate
solutions by graphing the
equations. Solve simple cases
by inspection. For example, $3 x$
+ 2y 5 and $3 x+2 y=6$ have
no solution because $3 x+2 y$
cannot simultaneously be 5 and
6.
c. Solve real-world and
mathematical problems
leading to two linear equations
in two variables. For example,
given coordinates for two pairs
of points, determine whether the
line through the first pair of
points intersects the line
through the second pair.
8.F.A.2. Compare properties of
two functions each represented
in a different way
(algebraically, graphically,
numerically in tables, or by
verbal descriptions). For
example, given a linear function
represented by a table of values
and a linear function
represented by an algebraic
expression, determine which
function has the greater rate of

pairs of simultaneous linear
equations.
a system of two linear equations in two variables correspond to points of berse points of intersection both equations b. Solve system equations in two variables algebraically, and estimate equations. Solve simple cases by inspection. For example, $3 x$ $+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2$ 6.
c. Solve real-world and mathematical problems teading to two linear equations given coordinates for two pairs of points, determine whether the ine through the first pair of points intersects the line
8.F.A.2. Compare properties of in a different way
(algebraically, graphically, numerically in tables, or by verbal descriptions). For exaple, given a line function represented by a table of values linear function expression, determine which function has the greater rate of
is useful in practical problems, relates to grade-level work in irrational numbers and plays an important role mathematically in coordinate geometry in high school

change.

8.G.B.7. Apply the

Pythagorean Theorem to
determine unknown side lengths in right triangles in real-world and mathematical problems in two and three
dimensions.

Key Vocabulary:

Chapter 10:
Scatter plot, quantitative data, association, bivariate data, dustering, line of best fit, interpolate, extrapolate

NJ Learning Standards Vocabulary:

8.SP.A.1, 2, 3, \& 4

Investigate patterns of association in bivariate data.
bivariate data, scatter plot, linear model, clustering, linear association, non-linear association, outliers, positive association, negative association, categorical data,
two-way table, relative frequency

Accommodations and Modifications:

Students with special needs: Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all instructional leaders. Modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered. Additional staff should be included so all students can fully participate in the standards associated with this curriculum.

ELL/ESL students: Students will be supported according to the recommendations for "can do's" as outlined by WIDA -
https://www.wida.us/standards/CAN_DOs/
Students at risk of school failure: Formative and summative data will be used to monitor student success at first signs of failure. Student work will be reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations. More time will be made available with a certified instructor to aid students in reaching the standards.

Gifted and Talented Students: Students excelling in mastery of standards will be challenged with complex, high level challenges.

English Language Learners:	Special Education:	At-Risk:	Gifted and Talented:

- Teaching modeling
- Peer modeling
- Word walls
- Give directions in small steps and in as few words as possible
- Provide visual aids
- Group similar problems together
- Repeat directions when necessary
- Provide a vocabulary list with definitions
- Use of alge-tiles when needed
- Use of number line when needed
- Utilize modifications \& accommodations delineated in the students' IEP
- Work with paraprofessional
- Work with a partner
- Shorten assignments to focus on mastery or key concepts
- Maintain adequate space between desks
- Keep workspaces clear of unrelated materials
- Provide fewer problems to attain passing grades
- Tape a number line to the student's desk
- Create a math journal that they can use during class, on assignments and (if teacher allows) on assessments
- Provide extra time to complete a task when needed
- Provide definitions of different graphs / charts with illustrations
- Allow tests to be taken in a separate room
- Allow students to use a calculator when appropriate
- Divide test into small sections of similar questions or problems
- Use of alge-tiles when needed
- Use of number line when
- Use visual demonstrations, illustrations and models
- Give directions / instructions verbally and in simple written format
- Peer support
- Increased one - on - one time
- Teachers may modify instructions by modeling what the student is expected to do
- Instructions may be printed out in large print and hung up for the students to see during the time of the lesson
- Review behavior expectations and make adjustments
- Create a math journal that they can use during class, on assignments and (if teacher allows) on assessments
- Allow students to complete an independent project as an alternative test
- Use of alge-tiles when needed
- Use of number line when needed
- Inquiry based instruction
- Independent study
- Higher order thinking skills
- Adjusting the pace of the lessons
- Real world scenarios
- Student driven instruction
- Allow students to complete an independent project as an alternative test

NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.W2. Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization, and analysis of content
W.8.1: Write arguments to support claims with clear reasons and relevant evidence.
W.8.10: Write routinely over extended time frames (time for research, reflection, metacognition/self correction, and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
NJSLSA.L1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking

Integration of Technology Standards NJSLS:

8.1.8.A.1: Demonstrate knowledge of a real world problem using digital tools.
8.1.8.D.5 Understand appropriate uses for social media and the negative consequences of misuse.

$21^{\text {st }}$ Century Standards

9.1.8.B.7 Construct a budget to save for long-term, short-term, and charitable goals.
9.1.8.C. 5 Calculate the cost of borrowing various amounts of money using different types of credit (e.g., credit cards, installment loans, mortgages). 9.2.8.B.3: Evaluate communication, collaboration and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.

Career Ready Practices:

CRP2: Apply appropriate academic and technical skills.
CRP4: Communicate clearly and effectively and with reason.
CRP6: Demonstrate creativity and innovation.
CRP8: Utilize critical thinking to make sense of problems and persevere in solving them.
CRP11: Use technology to enhance productivity.
History / Social Studies:
RH.6-8.7 Integrate visual information (e.g., in charts, graphs, photographs, videos or maps) with other information in print and digital texts

Major Supporting Additional (Identified by PARCC Model Content Frameworks)

